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ABSTRACT

A search for variable stars in the globular cluster NGC 288 was carried out using a time-series
of CCD images in theV and I filters. The photometry of all stellar sources in the field of view
of our images, down toV ≈ 19 mag, was performed using difference image analysis (DIA). For
stars of≈ 15 mag, measurement accuracies of≈ 8 mmag and≈ 10 mmag were achieved forV
and I respectively. Three independent search strategies were applied to the 5525 light curves but
no new variables were found above the threshold limits characteristic of our data set. The use of
older data from the literature combined with the present data allowed the refinement of the periods
of all known variables. Fourier light curve decomposition was performed for the RRab and the
RRc stars to obtain an estimate of[Fe/H]ZW = −1.62± 0.02 (statistical)±0.14 (systematic). A
true distance modulus of 14.768±0.003 mag (statistical)±0.042 mag (systematic), or a distance of
8.99±0.01 kpc (statistical)±0.17 kpc (systematic) was calculated from the RRab star. The RRc star
predicts a discrepant distance about one kiloparsec shorter but it is possibly a Blazhko variable. An
independent distance from the P–L relationship for SX Phe stars leads to a distance of 8.9±0.3 kpc.
The SX Phe stars V5 and V9 are found to be double mode pulsators.

Key words: globular clusters: individual: NGC 288 – Stars: variables:RR Lyrae, Stars: variables:

delta Scuti

1. Introduction

The globular cluster NGC 288 (C0050-268 in the IAU nomenclature) (α =
00h52m45.s2, δ = −26◦34′57.′′4, J2000;l = 151.◦29, b = −89.◦38) lies toward the

∗Based on observations collected with the 2.0 m telescope at the Indian Astrophysical Observa-
tory, Hanle, India.
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southern Galactic pole at about 12 kpc from the Galactic center, hence it is sub-
ject to very little interstellar reddening,E(B−V) = 0.03 mag (Harris 1996, 2010
update).

The cluster has been studied photometrically since 1943, which has led to
the discovery of several variable stars. Using 144 photographic plates from the
Franklin-Adams camera at Johannesburg, Oosterhoff (1943)reported the discov-
ery of a long-period (≈ 100 d) semi-regular variable star V1 as the first variable
star in NGC 288. The next variable star V2, an RRab star, was discovered about
thirty-five years later by Hollingsworth and Liller (1977) using seventeenB photo-
graphic plates and they estimated a period of≈ 0.679 d. It was not until the era
of CCD cameras that NGC 288 was studied again for variable stars in a pair of
papers by Janusz Kaluzny and collaborators (Kaluzny 1996, Kaluzny, Krzeminski
and Nalezyty 1997). These investigators used PSF-fitting photometry to find a
new RR Lyr star V3 pulsating in the first-overtone, six SX Phe pulsators (V4–V9),
and one eclipsing binary of the W UMa type (V10). Although Pietrukowiczet al.
(2008) used difference image analysis photometry to search(unsuccessfully) for
dwarf novae in time-series CCD images of NGC 288, they did notanalyse their
data for the known variables or attempt to find any new variables.

Our study to search for variable stars in NGC 288 and our analysis of their
characteristics is therefore the first such study using CCD image data and DIA
combined.

The distribution of these ten variables in the cluster is rather peculiar as they
define an off-center concentration of less than 3 arcmin in diameter in the other-
wise 10×10 arcmin2 field of our images. While this distribution may not be very
improbable, as will be discussed later in the paper, it addedto our interest in ex-
ploring the possibility of an incomplete census of variables stars. In the recent past
our team has exploited the powerful technique of DIA for time-series CCD images
in globular clusters to update and characterise the population of variables in them
(e.g., Arellano Ferroet al. 2013, 2011, Kainset al. 2013, 2012, Figuera Jaimeset
al. 2013, Bramichet al.2011).

In the present paper we report the results of our variable star search in theV
andI filters and the calculation of the cluster metallicity and distance. In Section 2
we describe the observations and data reductions. In Section 3 we describe the
approaches used to identify new variables and the procedureto refine the periods.
In Section 4 we apply Fourier light curve decomposition to the RR Lyr stars V2
and V3 and calculate their metallicity and absolute magnitude, and hence the dis-
tance to the cluster. In Section 5 we discuss the SX Phe P–L (Period-Luminosity)
relation and use the SX Phe stars as independent indicators of the cluster distance.
The double mode nature of V5 and V9 is also discussed there. InSection 6 the
properties of the variables V1 and V10 are addressed. In Section 7 we summarise
our results.
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2. Observations and Reductions

The observations employed in the present work were performed using the Joh-
nson–Kron–CousinsV andI filters on nine nights during 2010–2013 at the 2.0 m
telescope of the Indian Astronomical Observatory (IAO), Hanle, India, located at
4500 m above sea level. The detector was a Thompson CCD of 2048×2048 pixels
with a pixel scale of 0.296 arcsec/pix translating to a field of view (FoV) of ≈
10.1×10.1 arcmin2 .

The log of observations is shown in Table 1 in which the dates,number of
frames, exposure times and average nightly seeing are recorded. A total of 174
epochs in theV filter and 201 in theI filter spanning almost three years were ob-
tained.

T a b l e 1

The distribution of observations of NGC 288 for each filter

Date [y.m.d] NV tV [s] NI tI [s] Avg seeing [′′]

2010.12.11 21 30–80 36 20–25 1.8
2010.12.12 8 80 15 20–60 1.7
2011.10.07 20 80–100 19 15–20 2.5
2011.11.02 23 80–100 24 15–20 2.7
2011.11.03 33 80–150 33 20–30 2.5
2011.11.05 42 80 42 20 2.5
2013.01.20 2 160 2 30 2.7
2013.08.26 18 35-45 20 10–25 1.7
2013.08.27 7 70-90 10 10–20 1.9

Total: 174 201

ColumnsNV andNI represent the number of images taken with
theV andI filters respectively. Exposure time, or range of ex-
posure times, employed during each night for each filter are
listed in the columnstV and tI and the average seeing in the
last column.

2.1. Difference Image Analysis

We employed the technique of difference image analysis (DIA) to extract high-
precision photometry for all of the point sources in the images of NGC 288 and we
used the DANDIA † pipeline for the data reduction process (Bramichet al. 2013)
which includes an algorithm that models the convolution kernel matching the PSF
of a pair of images of the same field as a discrete pixel array (Bramich 2008).

In general, a reference image is built by stacking a set of images with the best
seeing. However, in the present case the seeing was not particularly good and we

†DANDIA is built from the DAN IDL library of IDL routines available athttp://www.danidl.co.uk
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opted for using only one image as a reference image for each filter. Then a sequence
of difference images was created by subtracting the relevant reference image, con-
volved with an appropriate spatially variable kernel, fromeach registered image.
The spatially variable convolution kernel for each registered image was determined
using bilinear interpolation of a set of kernels that were derived for a uniform 6×6
grid of subregions across the image.

The differential fluxes for each star detected in the reference image were mea-
sured on each difference image. Light curves for each star were constructed by
calculating the total fluxftot(t) in ADU/s at each epocht from:

ftot(t) = fref +
fdiff (t)
p(t)

(1)

where fref is the reference flux [ADU/s],fdiff (t) is the differential flux [ADU/s] and
p(t) is the photometric scale factor (the integral of the kernel solution). Conversion
to instrumental magnitudes was achieved using:

mins(t) = 25.0−2.5log[ ftot(t)] (2)

where mins(t) is the instrumental magnitude of the star at timet . Uncertainties
were propagated in the correct analytical fashion.

The above procedure and its caveats have been described in detail in Bramich
et al. (2011).

We also performed a relative self-calibration of the ensemble photometry. We
applied the methodology developed in Bramich and Freudling(2012) to solve for
the magnitude offsetsZk that should be applied to each photometric measurement
from the imagek. In terms of DIA, this translates into a correction (to first order)
for the systematic error introduced into the photometry from an image due to an
error in the fitted value of the photometric scale factorp. We found that in either
filter the magnitude offsets that we derive are of the order of≈ 1−10 mmag with
a handful of worse cases reaching≈ 30 mmag. Applying these magnitude offsets
to our DIA photometry notably improves the light-curve quality, especially for the
brighter stars.

2.2. Transformation to the Standard System

Standard stars in the field of NGC 288 are very numerous in the online col-
lection of Stetson (2000)‡. We selected a group of standards in the FoV of our
images that cover theV and V − I ranges between 14.5 mag and 20.5 mag and
0 mag and 1.5 mag, respectively, to ensure a good transformation for most of the
full Color–Magnitude Diagram (CMD), and to check for the color dependence of
the transformations.

‡http://www3.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/STETSON/standards
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Fig. 1. Transformation relations between the instrumentaland the standard photometric systems
using a set of standard stars in the field of NGC 288 from the collection of Peter Stetson.Top and
bottom panelscorrespond to the observations in theV andI filters respectively. See Section 2.2 for a
discussion.

T a b l e 2

Time-seriesV andI photometry for all the confirmed variables in our field of view

Variable Filter HJD Mstd mins σm fref σref fdiff σdiff p
Star ID [d] [mag] [mag] [mag] [ADU/s] [ADU/s] [ADU/s] [ADU/s]

V1 V 2455542.05923 12.538 13.705 0.001 32756.433 5.278 +194.010 39.867 0.9835
V1 V 2455542.06303 12.531 13.698 0.001 32756.433 5.278 +402.337 36.651 0.9932
...

...
...

...
...

...
...

...
...

...
V2 V 2455542.05923 14.830 15.997 0.004 3897.998 5.372 +92.541 13.824 0.9835
V2 V 2455542.06303 14.836 16.004 0.004 3897.998 5.372 +69.189 13.055 0.9932
...

...
...

...
...

...
...

...
...

...
V2 I 2455542.03472 14.467 15.543 0.004 5802.472 16.287 +259.464 19.695 0.9826
V2 I 2455542.03652 14.462 15.537 0.004 5802.472 16.287 +289.454 21.511 0.9805
...

...
...

...
...

...
...

...
...

...

StandardMstd and instrumentalmins magnitudes are listed in columns 4 and 5, respectively, corresponding to
the variable star in column 1. Filter and epoch of mid-exposure are listed in columns 2 and 3, respectively. The
uncertainty onmins is listed in column 6, which also corresponds to the uncertainty onMstd. For completeness,
we also list the quantitiesfref, fdiff andp from Eq.(1) in columns 7, 9 and 11, along with the uncertaintiesσref
andσdiff in columns 8 and 10. This is an extract from the full table, which is available from theActa Astronomica
Archive.
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The standard minus the instrumental magnitudes indeed showa mild depen-
dence on the color, as can be seen in Fig. 1. We have transformed the instrumental
v and i into the standardV andI magnitudes using the following equations:

V = v+0.0782(±0.0092)(v− i)−1.2065(±0.0078), (3)

I = i +0.0271(±0.0111)(v− i)−1.0889(±0.0094). (4)

Due to the lack of observations in theI-band for some bright saturated stars, to
calculate their standardV magnitudes, we have adopted for them(v− i) = 0.5 mag,
which corresponds approximately to the center of the RR Lyr horizontal branch
(HB).

Fig. 2 shows the RMS magnitude deviation in ourV and I light curves as a
function of the mean magnitude. We achieve an RMS scatter of≈ 10−20 mmag
in both theV andI filters for stars brighter than 17 mag.

Fig. 2. The RMS magnitude deviations as a function of magnitude. Theupper and lower panels
correspond to theV andI light curves respectively. The color coding is as follows: RRab star – blue
circle (V2), RRc star – green circle (V3), cyan circles are SXPhe stars (V4–V9) and red triangle is
an eclipsing binary (V10). The long period variable V1 is notincluded in thebottom panelbecause
it is saturated in theI images in our collection.

All of our V andI photometry for the variable stars in the FoV of our images
of NGC 288 is reported in Table 2. Only a small portion of Table2 is given in the
printed version of this paper, while the full table is available in the electronic form
from theActa Astronomica Archive.
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2.3. Astrometry

A linear astrometric solution was derived for theV filter reference image by
matching≈ 250 hand-picked stars with the UCAC3 star catalogue (Zacharias et
al. 2010) using a field overlay in the image display tool GAIA (Draper 2000). We
achieved a radial RMS scatter in the residuals of≈ 0.′′3. The astrometric fit was
then used to calculate the J2000.0 celestial coordinates for all of the confirmed vari-
ables in our field of view (see Table 3). The coordinates correspond to the epoch of
theV reference image, which pertains to the heliocentric Julianday 2455542.07 d.

3. Search for New Variable Stars

In this section we describe the use of our time-seriesV and I photometry to
search for new variables and to revisit the identifications,periodicities, and light
curves of the known variables.

3.1. Search Methods

Ten variable stars listed in Table 3 all previously known, are identified in the
finding chart of Fig. 6. Their distribution is apparently peculiar since they seem
concentrated in a rather small off-centered region in the FoV. Before we comment
on the statistical significance of this distribution we haveconducted a search for
new variables using our light curves. For this purpose we have used several meth-
ods which have been successful in previous studies in identifying and classifying
variable stars in globular clusters. Since these methods have already been described
in detail in earlier papers (e.g., Arellano Ferroet al. 2013, Figuera Jaimeset al.
2013), here we only summarize them briefly.

T a b l e 3

General data for all of the confirmed variables in NGC 288 in the FoV of our images

Variable Variable 〈V〉 〈I〉 AV AI P1 HJDmax P2 RA Dec.
Star ID Type [mag] [mag] [mag] [mag] [d] (+2 450 000) [d] (J2000.0) (J2000.0)

V1 SR 12.40 – 0.22 – – 5779.2366 103.a 00h52m41.s13 −26◦33′27.′′0
V2 RRab 15.237 14.788 1.137 0.74 0.6777478 5842.2373 0.67775 00h52m46.s69 −26◦34′08.′′1
V3 RRc 15.177 14.829 0.387 0.24 0.4301268 5871.1484 0.4302 00h52m40.s27 −26◦32′29.′′3
V4 SX Phe 17.264 16.898 0.316 0.20 0.07907489 5842.3110 0.07907 00h52m42.s85 −26◦34′46.′′1
V5 SX Phe 17.589 17.284 0.414 0.34 0.05106684 5868.2112 0.05107 00h52m45.s03 −26◦33′52.′′7
V6 SX Phe 17.400 17.028 0.462 0.30 0.06722082 5543.0555 0.06722 00h52m42.s45 −26◦34′55.′′2
V7 SX Phe 17.981 17.730 0.077 – 0.03997368 5871.1232 0.0399600h52m41.s44 −26◦34′00.′′3
V8 SX Phe 17.875 17.555 0.061 – 0.04652840 5871.2625 0.0465300h52m44.s32 −26◦34′00.′′3
V9 SX Phe 17.558 17.223 0.04 – 0.03936761 5842.2475 0.03937 00h52m42.s94 −26◦34′10.′′3
V10 E 19.275 18.545≈ 0.5 ≈ 0.7 0.4387538 5542.0865b 0.43875 00h52m47.s91 −26◦33′02.′′5

The best previous period estimates for each variable from Kaluzny et al. (1997) are reported in column 9 (P2)
for comparison with our refined periods in column 7 (P1). The period uncertainties are within the last significant
digit.
a from Oosterhoff (1943),b Time of minimum light.
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V1
V2

V3

V4 V6        
V5 

V10 

Fig. 3. Distribution of theSB statistic as a function of meanV magnitude for 5525 stars measured
in theV images of NGC 288. The colored symbols for variable stars areas described in the caption
of Fig. 2. The blue lines represent the median (50%) percentile for the simulated light curves and the
real distribution ofSB . The red solid line is the threshold set by eye above which oneexpects to find
true variable stars. See the discussion in Section 3.1. The two vertical dashed red lines correspond to
the magnitude limits set for the Blue Straggler region in theCMD.

Firstly, we have defined a variability statisticSB as:

SB =
1

NM

M

∑
i=1

(

r i,1

σi,1
+

r i,2

σi,2
+ · · ·+

r i,ki

σi,ki

)2

(5)

whereN is the total number of data points in the light curve andM is the number
of groups of time-consecutive residuals of the same sign from the inverse-variance
weighted mean magnitude. The residualsr i,1 to r i,ki form the i th group of ki

time-consecutive residuals of the same sign with corresponding uncertaintiesσi,1

to σi,ki . Fig. 3 shows the distribution of theSB statistic as a function of mean
magnitude for the 5525 light curves for the stars in theV images.

As in the paper by Figuera Jaimeset al. (2013) we calculated 106 randomly
generated light curves (their Eq. 4) and computed theirSB values. The median of
the distribution, or 50% percentile is indicated by the dashed blue line in Fig. 3. The
fit to the realSB values is shown as a solid blue line forV > 18 mag and we notice
that the real and the simulated values are very close,i.e., the simulations are a good
description of the statistical noise for these faint stars.For brighter stars however
(V < 18 mag) systematic errors dominate andSB increases logarithmically with
stellar magnitude. As before, the solid blue line is the fit tothe real distribution of
SB . Then, guided by the distribution of the known variables, wedefined by eye
a variability detection threshold indicated by the solid red line in Fig. 3. RR Lyr
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Fig. 4. Color–magnitude diagram of NGC 288. The colored symbols are as in the caption of Fig. 2.
The long period variable V1 is not included because it is saturated in theI images in our collection.

V10

V1

V2 V3

V5V4

V6

V7

V8V9

Fig. 5. Minimum value of the string-length parameterSQ calculated for the 5525 stars withV light
curvesvs.the CCDx-coordinate. The colored symbols are as described in the caption of Fig. 2.
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stars are generally easily identified by this method as they have substantially larger
values ofSB among stars of their magnitude range. The same is true of the SR long-
term variables. Short-period small-amplitude SX Phe starsmight however escape
detection by this approach. As it can be seen in Fig. 3 the three large amplitude
SX Phe stars (V4, V5 and V6) are found clearly above the threshold. However the
three low amplitude ones (V7, V8, and V9) and the known binarystar (V10) are
buried below in the cloud of otherwise non-variable stars.

Only seven stars brighter than 17 mag and one in the BS region (between the
two dashed red lines) haveSB larger than the detection threshold. We have ex-
plored theirV andI light curves in detail. No convincing signs of true variability
were found. For several of them their largeSB is explained by their proximity to
an authentic known variable star or to a poorly subtracted bright star, hence their
difference fluxes suffer correlated systematic errors.

A second strategy that we applied was the string-length method (Burke, Rolland
and Boy 1970, Dworetsky 1983) to each light curve to determine the period and a
normalized string-length statisticSQ . In Fig. 5 we plot the minimumSQ value
for each light curve as a function of their corresponding CCDx-coordinate. The
known variables are plotted with the colored symbols as described in the caption.
The horizontal blue line is not a statistically defined threshold but again, set by eye,
as an upper limit to the majority of the known variables. In fact this method could
recover variables V1 to V6 but also fails in detecting the low-amplitude short-period
variables V7 to V10. The eight stars spotted before as havinglargeSB values are
plotted with purple triangles and we note that only two wouldpass theSQ threshold
requirement. There are six other stars below theSQ threshold line. However, as
before, the exploration of their light curves did not revealany true variability.

Finally, we have followed a third approach to identify variables in the field of
our images by detecting PSF-like peaks in a stacked image built from the sum of
the absolute valued difference images normalized by the standard deviation in each
pixel as described by Bramichet al.(2011). This method allowed us to confirm the
variability of all ten known variables in Table 3 but no new variables emerged.

In conclusion, we did not find any new variable stars in our light curve collec-
tion using the above three methods. We believe that our search for variable stars
with continuous variations (i.e., not eclipsing binaries) is fairly complete down to
V ≈ 18 mag for amplitudes larger than≈ 0.05 mag and periods between≈ 0.02 d
and a few hundred days.

3.2. Period Determination and Refinement

We have combined ourV light curves with those of Kaluznyet al.(1997), taken
between 1990 and 1992, and of Kaluzny (1996), taken in 1995, to re-calculate the
periods. Since more than twenty years have passed between the two data sets, their
combination leads to substantially refined periods.
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Fig. 6. Finding charts constructed from our HanleV reference image. North is up and East
is to the right. The cluster image is 9.62× 9.87 arcmin2 , and the image stamps are of size
23.7×23.7 arcsec2 . Each variable lies at the center of its corresponding imagestamp and is marked
by a cross-hair.
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We have noticed small zero point differences of 0.02 mag to 0.08 mag between
our light curves and those of Kaluznyet al.(1997). This is to be expected since the
error in the reference flux affects all photometric measurements for a single star in
the same way. The procedure to estimate the refined period wasas follows: first we
estimated the period using the combined data sets and the programperiod04 (Lenz
and Breger 2005) and used this to phase the light curves. The necessary magnitude
shift was applied to the data from Kaluzny (1996) and Kaluznyet al. (1997) and
then the leveled combined light curve was period analyzed using a dense scan of
the string-length method within a short period range aroundthe initial estimate of
the period. The new periods are given in column 7 of Table 3 andhave been used
to phase the light curves shown in Figs. 7 and 9. Variations ofthe period within
the last significant digit can spoil the phasing of the light curve, which sets the
uncertainty of the periods. As a reference we list the periods from Kaluznyet al.
(1997) in column 9.

4. RR Lyrae Stars

4.1. Physical Parameters from Light Curve Fourier Decomposition

An estimation of [Fe/H],MV , andTeff for a given RR Lyr star can be obtained
by Fourier decomposing the light curve into its harmonics as

m(t) = A0 +
N

∑
k=1

Ak cos

(

2π
P

k(t −E)+φk

)

(6)

where m(t) are magnitudes at timet , P the period andE the epoch. A linear
minimization routine is used to fit the data with the Fourier series model, deriving
the best fit values of the amplitudesAk and phasesφk of the sinusoidal components.
From the amplitudes and phases of the harmonics in Eq.(6) theFourier parameters
φi j = jφi − iφ j andRi j = Ai/A j are computed.

These Fourier parameters can be used in the semi-empirical calibrations of Ju-
rcsik and Kovács (1996), for RRab stars, and Morgan, Wahl andWieckhorts (2007),
for RRc stars, to obtain[Fe/H]ZW on the Zinn and West (1984) scale. The abso-
lute magnitude MV can be estimated from the calibrations of Kovács and Walker
(2001) for RRab stars and of Kovács (1998) for the RRc stars. The effective tem-
peratureTeff was estimated using the calibration of Jurcsik (1998). For brevity we
do not present here the specific equations but they can be found in a recent paper
(Arellano Ferroet al.2013).

The mean magnitudesA0 , and the Fourier light curve fitting parameters for V2
(RRab) and V3 (RRc) in theV filter are listed in Table 4. The absolute magni-
tude MV was converted into logL/L⊙ = −0.4(MV −Mbol +BC). The bolometric
correction was calculated using the formulaBC = 0.06[Fe/H]ZW +0.06 given by
Sandage and Cacciari (1990). We adopted the valueM⊙

bol = 4.75 mag.
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Fig. 7. Standard magnitudeV and I light curves of the RR Lyr stars V2 and V3 phased with the
periods listed in Table 3. Black points represent Hanle datafrom the present work. Blue points
representV data from Kaluznyet al. (1997). Typical uncertainties inV andI are≈ 6 mmag.

T a b l e 4

Fourier coefficientsAk for k = 0,1,2,3,4, and phasesφ21, φ31 and φ41, for V2 (RRab) and V3
(RRc) in NGC 288

Variable A0 A1 A2 A3 A4 φ21 φ31 φ41 N Dm
ID [V mag] [V mag] [V mag] [V mag] [V mag]

V2 15.237(1) 0.401(2) 0.204(2) 0.138(2) 0.065(2) 4.257(12) 8.513(18) 6.805(34) 9 3.5
V3 15.177(1) 0.188(2) 0.008(1) 0.014(1) 0.011(1) 2.023(170) 5.115(99) 3.396(130) 6 –

The numbers in parentheses indicate the uncertainty on the last decimal place. Also listed are the number of
harmonicsN used to fit the light curve of each variable and the deviation parameterDm (see Section 4.1).

The resulting physical parameters are given in Table 5. The average metallicity
obtained from the RRab and RRc stars is[Fe/H]ZW = −1.62±0.02 which can be
converted to the new scale defined by Carrettaet al.(2009) using UVES spectra of
RGB stars in globular clusters by

[Fe/H]UVES= −0.413+0.130[Fe/H]ZW−0.356[Fe/H]2ZW. (7)

We find [Fe/H]UVES=−1.56±0.03. No previous estimates of [Fe/H] from Fourier
decomposition of the RR Lyr light curves exist for this cluster.

Zinn (1980) made an early estimation of iron content of NGC 288 from in-
tegrated photometry in theQ39 index. He found[Fe/H] = −1.61. Zinn and
West (1984) summarized previous estimates of [Fe/H] given in earlier papers in
a variety of metallicity scales (their Table 5). They reportthe weighted average
[Fe/H]ZW = −1.40 in their new scale. The high resolution spectroscopic value
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T a b l e 5

Physical parameters for V2 (RRab) and V3 (RRc) stars

Star [Fe/H]ZW MV log(L/L⊙) logTeff M/M⊙ R/R⊙

V2 −1.642(17) 0.376(3) 1.750(1) 3.800(8) 0.74(7) 6.04(1)
V3 −1.59(24) 0.579(7) 1.668(1)a 3.856(1) 0.38(1)a 5.57(9)

aThese values depend onMV whose peculiarity for V3 is discussed in Sec-
tion 4.2. The numbers in parentheses indicate the uncertainty on the last decimal
place and have been calculated as described in the text.

of [Fe/H], derived by Carretta and Bragaglia (1998) from twogiant cluster mem-
ber stars is−1.07 in their own scale which is equivalent to[Fe/H]ZW = −1.40
in the Zinn and West (1984) scale. Our calculation from two independent cali-
brations for RRab and RRc stars of the Fourier decompositionparameters average
[Fe/H]ZW =−1.62±0.02 (statistical)±0.14 (systematic), favors a lower iron con-
tent.

4.2. Distance to NGC 288 from the RR Lyr Stars

The MV value calculated for the RRab and RRc stars in Table 5 can be used
to estimate the true distance modulus. Given the fact that theseMV values come
from independent calibrations for the RRab and RRc stars, with their own sys-
tematic uncertainties, we should consider the distances asderived from them as
two independent estimations. We adoptedE(B−V) = 0.03 mag (Buonannoet al.
1984, Harris 1996). We find the true distance moduli of 14.768±0.003 mag and
14.505±0.008 mag using the RRab and RRc stars respectively. The uncertainties
are only the internal errors which are small. These moduli correspond to the dis-
tances 8.99 kpc and 7.96 kpc with corresponding internal andsystematic errors of
≈ 0.01 kpc and≈ 0.17 kpc respectively. The distance to NGC 288 listed in the
catalogue of Harris (1996, 2010 edition) is 8.9 kpc.

The distance obtained from the RRc star, V3, is discrepant when compared
with that from the RRab star and the generally accepted distance for the cluster. In
Fig. 8 we plotφ(s)

21 vs. P, which are the key parameters for the calculation ofMV

in RRc stars (see Eq. 13 of Arellano Ferroet al.2013), for a group of RRc stars in
several globular clusters listed in the caption of Fig. 8. The corresponding data have
been taken from recent publications of our working group on those clusters. V3 is
a long period RRc star and itsφ(s)

21 value is very small, these two facts highlight the
star as peculiar. The other stars that stand out from the distribution of RRc stars
are the long period V13 in NGC 4147 and the short period variable V92 in M53.
V13 was found by Arellano Ferroet al. (2004), to exhibit amplitude variations,
probably due to the Blazhko effect, while V92 shows an unusual low amplitude
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Fig. 8. Distribution of RRc stars from a family of clusters inthe φ(s)
21−P plane. Symbol codes and

data sources are: filled triangles NGC 4147 (Arellano Ferroet al. 2004), open circles M15 (Arel-
lano Ferro, García Lugo and Rosenzweig 2006), M2 open squares (Lázaroet al. 2006), NGC 5466
filled pentagons (Arellano Ferroet al.2008), NGC 5053 filled circles (Arellano Ferro, Giridhar and
Bramich 2010), M72 open triangles (Bramichet al. 2011), M53 open pentagons (Arellano Ferroet
al. 2011), M79 starred circle (Kainset al.2012), M30 filled square (Kainset al. 2013), M9 crosses
(Arellano Ferroet al.2013). In the long period range V3 in NGC 288 and V13 in NGC 4147stand
out from the distribution. The short period star V92 in M53 isalso peculiar. See text in Section 4.2
for a discussion.

(Arellano Ferroet al. 2011). We have noticed in Fig. 7 the amplitude difference
in the light curves of V3 from Kaluznyet al. (1997) data and that from the present
work. While we remark that this amplitude difference may be an artefact from the
reduction processes of both data sets, or that the presence of the Blazhko effect
cannot be ruled out, with the present data we cannot identifythe reason for the
peculiar position of V3 in theφ(s)

21−P plane. Due to these peculiarities, we do not
give any weight to the distance suggested by V3.

4.3. RR Lyr Masses and Radii

Given the period, luminosity and temperature for each RR Lyrstar, its mass and
radius can be estimated from the equations: logM/M⊙ = 16.907−1.47logPF +
1.24log(L/L⊙)−5.12logTeff (van Albada and Baker 1971) andL = 4πR2σT4 re-
spectively. The masses and radii are given in Table 5 in solarunits. Given the
peculiarity of MV for V3 (see Section 4.2), log(L/L⊙) and logM/M⊙ should be
considered with caution for this star.
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5. SX Phoenicis Stars

Six SX Phe stars are known in NGC 288, three of large amplitude(V4, V5 and
V6) and three of low amplitude (V7, V8, V9). We have searched the light curves
of all stars in an arbitrarily defined blue straggler region in the CMD of Fig. 4
delimited by the dashed red lines. As discussed in Section 3.1 all our approaches
to finding variable stars failed to reveal any convincing newvariables.

1

Fig. 9. Light curves of the SX Phe stars. Green symbols are from Kaluzny (1996) and Kaluznyet al.
(1997) and black symbols from the present work. Typical uncertainties are 0.03 mag and 0.05 mag
for V andI respectively.

The light curves of the six known SX Phe are shown in Fig. 9 phased with
the refined periods and epochs listed in Table 3. We have included the data from
Kaluzny (1996) and Kaluzny et al. (1997) (green symbols). Our I light curves are
also shown in the bottom panels.

It is worth noting that V5 has a larger dispersion than V4 and V6 despite being
of similar magnitudes. We searched for a secondary frequency by prewhitening the
primary frequencyf1 = 19.5821790±0.0000016 d−1 and its aliases. In Fig. 10 we
note the presence of a secondary frequency atf2 = 25.1482392±0.0000054 d−1 .
The ratio f1/ f2 = 0.779 lead us to identifyf1 and f2 with the fundamental and the
first overtone radial modes respectively.

Fig. 11 shows P–L diagram for the SX Phe stars. Except for V9, the known
SX Phe define a linear progression similar to the SX Phe in other globular clusters
(e.g., M53 Arellano Ferroet al. 2011 and Jeonet al. 2003, and M55 Pychet al.
2001). We adopted the SX Phe P–L relation derived by ArellanoFerroet al.(2011)
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Fig. 10. Frequency spectra of V5 calculated from theV light curve of Fig. 9. The primary frequency
f1 , its alias at 2f1 and secondary frequencyf2 are labelled. Sincef1/ f2 = 0.779 we interpret this
as being a double mode pulsator with the fundamental and the first overtones being excited.

V4

V5

V6

V8

V7

V9      

Fig. 11. P–L relation for SX Phe stars. The solid line corresponds to the SX Phe P–L relation
of Arellano Ferroet al. (2011) derived in M53 scaled to a distance of 8.9 kpc. Short and long
dashed lines represent the loci of the corresponding first and second overtone respectively. For V5
we represent the fundamental mode (filled circle) and the first overtone (black triangle) modes joined
by the dotted line. For V9 we indicate the positions of secondary frequenciesf2 and f3 which are
interpreted as a non-radial mode and the second overtone, respectively.

in M53, MV = −2.916logP−0.898, to calculateMV and hence the distance for
each SX Phe star. The average distance (excluding V9) is 8.9±0.3 kpc. The solid
line in Fig. 11 is theV− logP relation corresponding to a distance of 8.9 kpc. As it
is seen the match with the SX Phe distribution is very good. V5lies slightly above
the relation but we have noted that it is blended with a fainter star. There is a clear
indication that V9 is pulsating in an overtone mode.
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The above independent estimation of the distance is in excellent agreement with
the distance derived from the Fourier decomposition of the RRab star V2 and with
the generally adopted distance (8.9 kpc Harris 1996).

Fig. 12. Frequency spectra of V9 calculated from theV light curve of Fig. 9. The secondary frequen-
cies f2 and f3 are labelled and discussed in Section 5.

Then the question arises: if all known SX Phe stars in NGC 288 pulsate in the
fundamental mode (except V9), why do some have a very large amplitude (V4, V5,
V6) and some a very small one (V7 and V8)? We explore the possibility of more
than one mode being excited in the small amplitude stars. Using the frequency
finding programperiod04 (Lenz and Breger 2005) we have prewhitened the main
frequency, and in all cases except V9 we found no signs of secondary frequencies.
Therefore, V9 deserves special attention. In Fig. 12 the frequency spectra calcu-
lated on theV light curves are shown. The top panel corresponds to the original
data, where the main frequencyf1 = 25.4015993 d−1 agrees well with the period
found from the string-length method (Table 3). The middle panel corresponds to the
spectrum after prewhitening the main frequency. The residuals show a frequency
of f2 = 24.61423 d−1 . As the residual signal is substantial a second prewhitening
was performed to find a frequency off3 = 35.95981 d−1 . The ratio f1 / f3=0.706
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is a bit off the canonical value 0.783 for the fundamental andfirst overtone modes
(Santolamazzaet al.2001, Porettiet al.2005). After removingf3 the signal virtu-
ally disappears; however some signal remains aroundf1 , which probably indicates
that we have not fully succeeded in determining and removingthe primary fre-
quency, which given the scatter in the light curve is probably not surprising. On the
other hand our frequency ratio of 0.706 is very close to the ratio between first and
second overtone which is 0.729. In Fig. 11 we have also included the positions of
V9 corresponding to the frequenciesf2 and f3 (black triangles). If one identifies
f1 and f3 with the first and second overtone frequencies respectively, this strongly
suggests that V9 is a double-mode SX Phe pulsating simultaneously in the first and
second overtones whilef2 probably corresponds to a non-radial mode.

However, it is clear that this is a multifrequency variable,which accounts for
its very small amplitude. The fact that we did not find secondary frequencies in the
spectra of the other two small amplitude SX Phe stars, V7 and V8, is intriguing.

6. On the Variability of V1 and V10

These two stars are a bright long period variable and a faint contact binary
respectively. Here we offer some comments on their variability and periods.

V1. The variability of this star was discovered by Oosterhoff (1943) on photo-
graphic plates taken between 1928 and 1930. Despite the timeelapsed, the phase
coverage in Oosterhoff’s light curve continues to be the best available. In Fig. 13
we plot the light curves from 1928–1930 and 2010–2013. A period analysis ex-
clusively using the old data gives a period of 103 d, as reported by Oosterhoff.
Unfortunately it is not very clear how Oosterhoff calculated the mean brightness
reported in his Table 1, thus despite the fact that we haveV magnitudes for V1 and
one of the comparison stars used by Oosterhoff (starb in his chart), we refrain
from attempting to bring the old measurements into a similarmagnitude scale.

V10. This is a very faint eclipsing binary discovered by Kaluznyet al. (1997).
Its membership in NGC 288 was addressed by Rucinski (2000) who considers it
a cluster member after comparing its value ofMV derived for the cluster distance
modulus and the one implied by aMV− logP−(B−V) relationship.

In Fig. 14 the light curves in ourV andI data are shown along withV data from
Kaluznyet al. (1997) phased with the refined period given in Table 3.

7. Summary and Conclusions

A deep search for variability in the RGB, HB, BS and turnoff point (down to
V ≈ 19 mag) regions of the globular cluster NGC 288 was conductedbut new
variables were not found. Thus, we can claim that in the FoV ofour images the
census of cluster RR Lyr stars is complete (except where the bad pixel column lies,
see finding chart in Fig. 6) and that if unknown SX Phe stars do exist in the cluster
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Fig. 13. Light curves of the SR star V1.Top panel: the differential mean brightness from Table 1
of the discovery paper (Oosterhoff 1943). A period analysisof these data confirms the 103d period
reported by Oosterhoff.Bottom panel:the variations from ourV photometry.

they must be of amplitudes smaller than the detection limit of our data.

We addressed the apparent off-center distribution of the variables stars. We
investigated the distribution of the SX Phe stars in this cluster by comparing it
to the spatial distribution of all blue straggler stars (BSS). This is similar to what
was done by Kainset al. (2012) for the peculiar distribution of RR Lyr stars in
NGC 1904 (M79). We first looked at the angular distribution ofthe six SX Phe
stars in our sample,i.e., how “close together” our SX Phe stars are, and compared
it to randomly drawn samples of six BSS. We find that the angular distribution of
the detected SX Phe stars is smaller than 83% of the randomly drawn samples,
which is not significant given the small sample size. We also looked at the centroid
position of the randomly drawn samples with respect to the center of the cluster as
estimated from our reference image. From this we found that although visually the
stars appear off-center, the offset of their centroid with the center of the cluster is
very close to the most probable value found from the random samples, with 45% of
the samples having a centroid further from the center of the cluster than our SX‘Phe
sample.

The Fourier decomposition of the light curves of one RRab andone RRc star
was performed to calculate the values of [Fe/H],MV , logL/L⊙ , Teff , the stellar
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Fig. 14. V and I light curves of V10 with the data from Kaluzny (1996) and Kaluzny et al. (1997)
(green circles) and our data (black circles). Both data setshave been used to refine the period in
Table 4.

radius and mass, usingad hocsemi empirical calibrations (Jurcsik and Kovács
1996, Morganet al.2007, Kovács and Walker (2001) and Kovács (1998).

The mean value of the iron abundance obtained from the two RR Lyr stars in
the cluster is[Fe/H]ZW =−1.62±0.02 (statistical)±0.14 (systematic) in the Zinn
and West (1984) scale or[Fe/H]UVES= −1.56±0.03 (statistical)±0.20 (system-
atic) in the scale defined more recently by Carrettaet al. (2009). The absolute
magnitudes of the RRab and RRc stars lead to significantly different distances:
from the RRab (V2) we find a distance of 8.99 kpc while from the RRc we find
7.96 kpc (with internal statistical error of≈ 0.003 kpc) but we have noted that the
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relevant Fourier parameterφ21 is peculiar in V3. An independent estimate of the
cluster distance was made from the individual stellar distances obtained from the
P–L relation of the SX Phe stars (Arellano Ferroet al.2011). We found an average
distance of 8.9±0.3 kpc.

Finally, we identified the two SX Phe stars, V5 and V9, as double-mode pul-
sators. V5 is pulsating in the fundamental and the first overtone while V9 seems to
be pulsating in the first and second overtones plus a non-radial mode.
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