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ABSTRACT
We present the Signal Detection using Random-Forest Algorithm (SIDRA). SIDRA is a detection
and classification algorithm based on the Machine Learning technique (Random Forest). The
goal of this paper is to show the power of SIDRA for quick and accurate signal detection and
classification. We first diagnose the power of the method with simulated light curves and try it
on a subset of the Kepler space mission catalogue. We use five classes of simulated light curves
(CONSTANT, TRANSIT, VARIABLE, MLENS and EB for constant light curves, transiting
exoplanet, variable, microlensing events and eclipsing binaries, respectively) to analyse the
power of the method. The algorithm uses four features in order to classify the light curves.
The training sample contains 5000 light curves (1000 from each class) and 50 000 random
light curves for testing. The total SIDRA success ratio is ≥90 per cent. Furthermore, the success
ratio reaches 95–100 per cent for the CONSTANT, VARIABLE, EB and MLENS classes
and 92 per cent for the TRANSIT class with a decision probability of 60 per cent. Because
the TRANSIT class is the one which fails the most, we run a simultaneous fit using SIDRA

and a Box Least Square (BLS)-based algorithm for searching for transiting exoplanets. As
a result, our algorithm detects 7.5 per cent more planets than a classic BLS algorithm, with
better results for lower signal-to-noise light curves. SIDRA succeeds to catch 98 per cent of
the planet candidates in the Kepler sample and fails for 7 per cent of the false alarms subset.
SIDRA promises to be useful for developing a detection algorithm and/or classifier for large
photometric surveys such as TESS and PLATO exoplanet future space missions.

Key words: techniques: photometric – planets and satellites: detection – planets and satellites:
fundamental parameters – planetary systems.

1 IN T RO D U C T I O N

The recent development of wide-field photometric surveys opens up
a new field of astrophysics. The deployment of both ground-based
(SuperWASP, HAT, QES) and space-based (CoRoT, Kepler) sur-
veys increases dramatically our knowledge about transiting planets.
Indeed, the huge amount of collected data leads to a real problem of
identifying targets. The OGLE survey, for example, observes more
than 300 million stars in the Galactic bulge each night, leading to
a sorting problem. This kind of problem is a known as a Big Data
problem.

Several methods are used to tackle the Big Data problem,
and the Machine Learning algorithm is one of them. The Ran-
dom Tree/Forest algorithm was described in 2001 by L. Breiman
(Breiman 2001) as part of Artificial Intelligence and Machine Learn-
ing general algorithms. Some teams have already used Machine
Learning algorithms for astronomical projects, especially for the
large amount of data from the Kepler mission (Hogg et al. 2013).

� E-mail: dmislis@qf.org.qa

Machine Learning object detection and classification for automated
classification of active stars and galaxies is described in Li, Zhang
& Zhao (2008), using the k-Nearest Neighbours method. Recently,
Masci et al. (2014) published an algorithm based on Random For-
est for automatic classification of variable stars using the Wide-field
Infrared Survey Explorer data with a success ratio from 87.8 to
96.2 per cent. In the same year, OGLE detected a supernova Type
Ia event, using real-time detection and Machine Learning automatic
classification (Wyrzykowski et al. 2014). Furthermore, a Random
Forest algorithm is used by McCauliff et al. (2014) to identify false
positives in the Kepler mission data.

The exoplanet microlensing surveys such as OGLE and MOA
are facing a challenge with real-time photometry and lens detection
(Bond et al. 2001). Microlensing detections must be observed by as
many teams as possible in order to have a complete phase coverage
of the phenomenon. This introduces a need for fast event detection
on a huge amount of light curves.

In 2002, Kovács, Zucker & Mazeh (2002) published the Box
Least Square (BLS) algorithm for transiting exoplanet detection
and since then, there are many different versions of BLS (Foreman-
Mackey et al. 2015). BLS is a very successful algorithm for
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The SIDRA algorithm 627

Table 1. Input parameters and limits for our simulated light-
curves sample. For each value we use uniform random
distribution.

rms (ε) 0.01–0.05
Period (P) 1–15 d
Spectra type F0–M5
Planetary radius (RP) 0.7–2.0RJ

Transit inclination (i) imin–90 deg
Observing window (t) 30 d
Time resolution 30 min

almost all of the transiting surveys such as Kepler (Boruki et al.
2010), CoRoT (Moutou et al. 2007) – from space – and Super-
WASP (Cameron et al. 2006), HATNet (Bakos et al. 2011), QES
(Alsubai et al. 2013) etc. – from the ground. In principal, in order to
detect a transiting signal in a light curve using a BLS algorithm, we
have to fit the orbital period of the planet, the centre of the eclipse
Tc, the duration of the transit and the depth of the transit (Bordé
et al. 2007; Bonomo et al. 2012; Cabrera et al. 2012).

In this paper, we study a very different approach for signal detec-
tion and classification for transiting exoplanets, variable stars and
microlensing events by changing the philosophy of signal detection
from fitting to blind search using Machine Learning techniques.

2 D E S C R I P T I O N O F T H E M E T H O D A N D
S I M U L AT E D L I G H T C U RV E S

2.1 Light-curve simulations

In this paper, we used simulated light curves for the training and
testing sample in order to perform various tests. We focused on
five typical light-curve types which can be expected in photometric
surveys. These are constant stars (called hereafter CONSTANT),
the exoplanet transiting light curves (TRANSIT), the variable stars
(VARIABLE), the eclipsing binaries (EB) and the microlensing
light curves (MLENS). Each light curve is described by a normal-
ized flux as a function of time. We added noise to each light curve
with various precisions. The rms is selected from a uniform distri-
bution between 1 and 5 per cent. We used a 30-d observing window,
with a 30 min sample to simulate the light curves. Some of these
types of light curves, such as the TRANSIT sample, require stellar
physical properties (stellar mass, stellar radius, effective temper-
ature) given by Kaler (1998). We select main-sequence host stars
randomly, using a uniform distribution from F0 to M5 spectral type.
This range was adopted because it roughly represents 90 per cent
of the total stars in the sky (Robin et al. 2004). Table 1 summa-
rizes all the input parameters and ranges we used for the simulated
light curves. Fig. 1 shows typical simulated light curves from each
class. A more detailed description for each light-curve class is given
below.

2.1.1 CONSTANT

This subset of light curves is the most simple, and we can easily
create it using pure white noise. The flux fC of a constant light curve
is given by

fC(t) = 1 + ε, (1)

where ε is a random variable set by a normal distribution N(0, rms).
The rms is randomly selected to be in the range of 0.01 ≤ rms ≤
0.05.

Figure 1. Four random light curves (TRANSIT, VARIABLE, MLENS and
EB) and their model (red solid line).

2.1.2 TRANSIT

The host stars’ spectral type and the physical properties are selected
randomly from the main-sequence data set as we describe in Sec-
tion 2.1. The planet radius is also chosen randomly to be in the
range 0.7–2RJ and the period was chosen between 1 and 15 d. The
inclination angle i was chosen in the range imin ≤ i ≤ 90 deg to
ensure a transit. The imin is the minimum transit angle described by

cos imin = R� + RP

α
, (2)

where R� is the star radius, RP the planetary radius and α the semi-
major axis. Note that we choose a null eccentricity. The transit
model is produced using a quadratic limb-darkening law and the
adopted flux is given by

fT(t) = Pal(t, P , δ, i, d) + ε, (3)

where Pal() is the Pál (2008) transiting analytical model, P is the
period, δ is the transit depth and d is the duration of a transit. The
limb-darkening coefficients are given by Claret (2004).

2.1.3 VARIABLES

For this subset, we selected only stellar types crossing the main se-
quence and the instability strip of the Hertzsprung–Russel diagram.
This leads to select only F-type stars. We modelled the light curve
by using a pure sinusoidal signal, with a flux amplitude 0.01 ≤
AV ≤ 0.1 and period P, between 1 and 15 d. This way we mainly
modelled some common types of variable stars such as RR Lyrae,
δ-Scuti etc. Equation (4) gives the flux of our variable subset light
curves:

fV(t) = 1 + AV · sin(2πt/P ) + ε. (4)

2.1.4 Eclipsing binaries

The eclipsing binaries subset light curves were modelled using the
same stellar main-sequence characteristics (Section 2.1). The se-
lected period is again between 1 and 15 d. In order to simulate a full
eclipsing binary light curve (primary/secondary eclipse, ellipsoidal
variations etc.) we used the PHOEBE eclipsing binary analytical
model (Prša 2005). PHOEBE requires stellar characteristics for
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628 D. Mislis et al.

both of the stars, such as stellar temperatures, masses and radii plus
the orbital period of the system. We do not describe here the full
equation package but the light-curve flux fEB we used is given by
equation (5):

fEB(t) = PHOEBE(t,Mi, Ri, Ti, P ) + ε, (5)

where PHOEBE() is the eclipsing binaries model, Mi, Ri and Ti

are the stellar mass, radius and temperature, respectively, for the
primary (i = 1) and the secondary (i = 2) star. Finally, P is the
orbital period.

2.1.5 Microlensing

We produce microlensing light curves as though they have been
observed by a survey such as MOA (Bond et al. 2001) or OGLE
(Udalski et al. 1992). We select a uniform random value for the time
of maximum to between 0 and 30 d. We also select Uo, the minimum
impact parameter, from a uniform distribution (Alcock et al. 2000;
Sumi et al. 2011). We select the Einstein ring crossing time tE from
a normal distribution with a mean of 20 d and a standard deviation
of 5 d, which is a rough approximation of the true tE distribution
(Sumi et al. 2011). Finally, we select a uniform distribution for the
source flux fs and the blend flux fb in the range of 1–10. The adopted
flux is

fM (t) = fs · A(t) + fb

fs + fb
+ ε, (6)

where A(t) is the microlensing magnification (Paczynski 1986).

2.2 Random forest basics

In the Machine Learning domain, the key is to give informative
parameters to the algorithm that describe the problem in hand. These
parameters, called features, must reflect the intrinsic properties of
the different classes. Using these features as inputs, the Random
Forest is a three-step algorithm, as a typical Machine Learning
procedure suggests (train–test–predict).

(i) The first step is the training part of the algorithm. The Random
Forest uses the features of each vector of the training sample to build
Ntree decision trees which are tuned to fit the output classes (train-
step).

(ii) After the training process, it is recommended to characterize
the performance of the algorithm by using an exercise sample (test-
step).

(iii) If the user is satisfied with the accuracy of test-step, then the
Random Forest can be used for any feature of the sample (predict-
step).

To help in the customization of the Random Forest algorithm, we
used various tools. The feature importance vector gives the relative
importance of each feature to produce the most accurate estimator.
The confusion matrix shows in a simple way how well the algorithm
performs. Its diagonal values are equal to the success ratio for each
of the classes. Also, the i �= j element of the confusion matrix give
the false positive/negative rates (Masci et al. 2014).

2.3 The statistical method

SIDRA, basically follows three simple rules.

(i) Features must be as general as possible. SIDRA is able to com-
pute them in a fully blind way for all kinds of light curves.

Figure 2. Two different probability functions. A normal Gaussian CDF
(blue dashed line) and the inversed Gaussian CDF (red solid line).

(ii) Features’ extraction must also be as fast as possible, in order
to make the algorithm useful for large and/or real-time surveys
(TESS, PLATO, OGLE, ATLAS etc).

(iii) Features must show very weak correlation with each other.
There is no additional information for highly correlated features.

To respect the first and second conditions, we make the choice
to derive our features without any model fits and we calculate only
the statistical information straight from the light curve. We use four
features for SIDRA.

(i) The skewness S: this is a measure of the asymmetry of a
distribution, defined as the third standardized moment –

S = 1

n

n∑
i=1

(xi − x̄)3

σ 3
, (7)

where x̄ is the mean, σ the standard deviation and n the total number
of observations.

(ii) The kurtosis K: this is a measure of the flatness of a distribu-
tion defined as the fourth standardized moment –

K =
n∑

i=1

(xi − x̄)4

σ 4
. (8)

(iii) The autocorrelation integral AI: the autocorrelation integral
is the sum of the autocorrelation values for all possible delays τ .
The autocorrelation versus delay (τ ) diagram gives information
about periodical patterns of the light curve. For SIDRA, we explore
the full observation window and measure the integral given by the
autocorrelation vector

AI =
∣∣∣∣∣

n∑
τ=1

(
1

(n − τ ) · rms2

n=τ∑
i=1

(xi − x̄) (xi+τ − x̄)

)∣∣∣∣∣ . (9)

(iv) The modified information entropy (ES) – or Shannon Entropy
(Shannon & Weaver 1949): for each class of light curve, we assume
a normal distribution. This is true only for a CONSTANT light
curve, but still there is more information for all the other light-curve
types too. Thus, each xi has a probability based on the Cumulative
Distribution Function (CDF). Based on the nature of the survey
(exoplanets, variables, microlensing), we can use different CDFs
(normal or inversed Gaussian CDF – Fig. 2) in order to cover
different light-curve cases. For our current SIDRA version we used
the normal and the inversed Gaussian CDF (blue and red line –
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The SIDRA algorithm 629

Figure 3. Different features for all classes. Top: the skewness and kurtosis
(red and blue, respectively). Bottom : autocorrelation and entropy features
(green and magenta, respectively).

Fig. 2) in combination. The probability P(xi) of each data point xi

is given by equation (10):

P (xi) = 1

2
·
(

1 + 2√
π

∫ xi−x̄

rms·√2

0
e−t2

dt

)
, (10)

and the total entropy ES of each light curve is given by equation
(11):

ES(x) = −
i=n∑
i=1

(∫ δ2

δ1

log2(P (δ))dδ

)
, (11)

where δ1, 2 = xi ± σ i and σ i is the error of the point xi of the light
curve.

Our final ES is calculated by adding two values of ES calculated
by the normal and inverse Gaussian CDF.

The features we have chosen show weak correlation in the pa-
rameter space. Fig. 3 shows the correlation matrix between all fea-
tures and classes. VARIABLE, EB and MLENS classes are very
well determined. On the other hand there is a confusion between
CONSTANT and TRANSIT classes. Because of the low signal-to-
noise (S/N) ratio of some light curves, it is impossible to distinguish

Figure 4. The feature importance statistics. ES value is the most important
(40.2 per cent).

between constant and transits (pure noise light curves). Fig. 3 (bot-
tom) explains the results of the confusion matrix (Fig. 5).

It is clear from Fig. 3 (top) that in some cases the Random Forest
decision is very obvious because the classes are very well separated,
suggesting that maybe we do not need a Random Forest algorithm.
On the other hand, Random Forest becomes important to distinguish
objects where their features are mixed (Fig. 3 – bottom). Also, in this
paper we show only some cases. The input classes could be modified
by any team, or even increased by adding more different light curves,
making the problem much more complicated (distinguish between
supernova – microlensing light curves or different types of variables
for example).

3 PE R F O R M A N C E

3.1 General

First we create a ‘TRAIN’ sample using the five classes of light
curves described in Section 2.1. We use 1000 light curves for each
class (5000 in total) and we calculate the S, K, AI and ES fea-
tures of each one. We also add a flag (CONSTANT, TRANSIT,
VARIABLE, EB, MLENS) for each algorithm decision per class.
By training SIDRA we found that the fitting score of the ‘TRAIN’
sample is 90 per cent using 100 trees. That means from the 5000
light curves, SIDRA could successfully distinguish 4500 of them.
The majority of the remaining 10 per cent, which SIDRA fails, comes
from CONSTANT and TRANSIT due to low S/N ratio, as we have
described previously.

It is very important for all features to have a good statistical
weight in the procedure. The importance of each feature is high
enough to be included in the algorithm. After the training procedure,
the importance of each feature is shown in Fig. 4.

The most important feature is ES with 40.2 per cent, then AI with
28.5 per cent and skewness and kurtosis with 12.2 and 19.1 per cent,
respectively. The AI feature contains high values for high-amplitude
light curves such as microlensing and/or variables. On the other
hand, skewness and kurtosis include information on the light curve
shape, which is different for different classes. Finally, ES shows
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630 D. Mislis et al.

Figure 5. The confusion matrix for decision probability of 0.6, where rows
and columns refer to input and output light-curve flag, respectively. The
colour bar refers to the success ratio.

values around zero for variables, and constant, with high positive
values for microlensing and negative values for planets and binaries.

We applied SIDRA to 10 000 light curves from all classes as a blind
test (50 000 light curves in total). We create a confusion matrix using
these results. In principal, the algorithm collects all decisions from
all different trees. The final decision is made by maximizing the
probability from all of the different trees. In the worst case, the
minimum decision probability is 0.2 (because we have five classes
– 1/5), for a five class Random Forest such as SIDRA.

It is obvious that the small decision probability decreases the
success ratio of the algorithm because we have to deal with a flip-
coin decision. We force SIDRA to take more certain decisions. For our
example, we used a decision probability equal to 0.6. The confusion
matrix shows the results of this test (Fig. 5). The success ratio
for each class is 100 per cent for microlensing and variable stars,
97 per cent for eclipsing binaries (3 per cent planet false alarm),
95 per cent constant (5 per cent planet false alarm) and 92 per cent
for transits (8 per cent constant false alarms). If we increase the
decision probability (from 0.2 to 0.6) some light curves in the range
of 0.2–0.6 are rejected. At 0.6 decision probability the algorithm
rejects 5 per cent of the total sample.

It is clear that the success ratio of the algorithm is a function of
the decision probability cut and there are no ‘golden’ fixed numbers
for each survey. On the other hand, each survey should define these
numbers for their own goals, depending on their targets and features.
As an example we can say that it is extremely rare for a transit survey
to detect a microlensing event. Most of the transit surveys (if not all)
avoid the fields in the Galactic plane. In these fields the probability
to detect a microlensing event is close to zero. On the other hand
microlensing surveys do not search for transiting planets because
of the magnitude range and faint target stars of the field.

We plan to give a more detailed analysis for the decision proba-
bility based on different algorithms (such as Bayesian, Dempster–
Shafer theory and/or Fuzzy Logic) in a future paper.

3.2 A closer look at planets

From the tests in Section 3.1, the most confusing classes are
CONSTANT and TRANSIT. Fig. 5 suggests that 92 per cent of
the transiting light curves can be resolved by SIDRA, but this is not
totally true. In Table 1 we select all the host stars between F0 and

Figure 6. BLS (blue bars) and SIDRA (white bars) results after simultane-
ously searching for different S/N values.

M5, planetary radius 0.7–2RJ and noise from 1 to 5 per cent. That
means that for 30 per cent of our stellar sample (F0–G0), the transit
depth range is from 0.008 to 2.5 per cent for the worst and best case,
respectively. Most of these planets do not show any signal in the
light curve with the noise properties we used and it is impossible to
be detected. The real question is how many ‘detectable’ transiting
planets SIDRA could flag.

In order to judge the algorithm on the transiting light curves
sample, we compare SIDRA with a BLS-type algorithm, such as
Kovács et al. (2002). We run BLS and SIDRA simultaneously on the
same data set. For BLS we select a signal detection threshold at
the 1σ level. Even if 1σ is not realistic for a real world survey (we
expect signals above 2σ ), this threshold is generous for BLS. If
we increase the detection threshold, of course we expect much less
planets. We compare with SIDRA 0.5 decision probability threshold
(Fig. 6).

Both of the algorithms found approximately the same amount
of planets. SIDRA detected 85.4 per cent of the sample and BLS
77.9 per cent of the sample (7.5 per cent less planets than SIDRA)
even with 1σ detection threshold. Also, Fig. 6 shows that SIDRA is
more sensitive than BLS for low S/N light curves.

3.3 Real data example – Kepler mission

The next task was to use our algorithm on real data in order to
check its success. This section is only a small example with limited
amount of data and tests. We plan to present a full Kepler mission
data analysis using SIDRA in a future publication. For our tests we
focus only on the exoplanets group of light curves using Kepler
public light curves available from the Kepler archive hosted by the
Multimission Archive at STScI.1 The observations comprised only
from the long cadence.

In order to use these data from a space mission, we modified our
training sample. We did not train for variables, microlensing events
or eclipsing binaries.

We have used Kepler Q1–Q6 Kepler Object of Interest (KOI)
data set. We used 2000 light curves flagged as transit candidates
(PLANET-SET; Batalha et al. 2013; Mullally et al. 2015) and 2000

1 http://archive.stsci.edu
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The SIDRA algorithm 631

Figure 7. The Kepler sample we used for our test. From 0.5 to 50RE and 5–
5000 S/N. The S/N has been calculated in a 400.0-d orbital period window.
Plot shows also the SIDRA successful and unsuccessful detections (red and
blue dots, respectively).

Figure 8. The confusion matrix of the Kepler data test, where rows and
columns refer to input and output light-curve flag, respectively. The colour
bar refers to the success ratio. Decision probability is 0.5.

light curves from the Q1–Q6 data set flagged as non-transiting
exoplanets (CONSTANT-SET). We select our sample randomly,
which means that our sample includes both large and small transiting
light curves. Fig. 7 shows a planetary radius versus S/N ratio of the
Kepler sample we used.

Furthermore we create another data set with 1000 light curves
flagged as FALSE-SET. These light curves are included in the KOI
Kepler catalogue but they are not real planets. We select false alarm
light curves which belong to the CONSTANT-SET. Finally, we have
to mention that we were using ∼400 d of Q1–Q6 KOI data set.

We train the forest using two classes (CONSTANT and TRAN-
SIT) as described in Section 2.1, but we run it for all three data sets.
We used rms range from 0.001 to 0.01, period range 1–200 d and
planetary radius of 1–5RE. The total number of training light curves
was 1000 per class. Fig. 8 shows the results of our test.

The success ratio of real planets is 98 per cent. The constant
success ratio is 100 per cent and the False Alarm success ratio is
93 per cent. The False Alarm ratio is quite important. SIDRA classifies
only the 7 per cent of the False Alarm light-curves as planets, which

appear in the KOI Kepler list. On the other hand SIDRA seems to miss
2 per cent of real planets. In order to detect planets with higher period
and/or smaller S/N, we need many more data than 400 d. Also, we
did not include any ‘exotic’ light curves in our training sample
(Section 3.4). A more accurate analysis is required in a future paper
including many more classes other than Constant and Planet data
sets. The decision probability of 0.5 contains the 90 per cent of the
sample.

3.4 Exotic light curves

The Kepler mission data have shown how difficult it is to detect
transiting exoplanets around a star with high variability. These kind
of light curves are the most important for space missions because
with such high photometric accuracy, most of the stars show some
kind of real variability. BLS-like algorithms fail to detect these
kind of transits because of the algorithm design. BLS assumes that
the out-of-transit mean value of all transits is 1 (or 0). This is not
true in a variable star light cure with transit. The signal of the
variable star dominates the light curve with very strong primary and
harmonic periods. Almost all the combined transiting light curves
need special analysis. For a pure blind detection method it is a very
difficult problem for any algorithm, including Machine Learning.

SIDRA is able to ‘solve’ the problem with a combined analysis
method similar to other BLS-like techniques. We simulate multi-
period variable plus transiting exoplanet signals using Kepler accu-
racy specifications. Fig. 9 (top) shows an example of our simulated
light curve.

The strategy is simple. We first run SIDRA on the raw light curve.
The algorithm classifies the light curve as a variable with probability
98 per cent. Once we detect a variable signal, we use Lomb–Scargle,
FFT or binned polynomial fits in order to remove strong periodicities
(Fig. 9 – bottom). Finally, we run SIDRA once more using the new
light curve. We detect a planet with probability of 81 per cent.

We run the same experiment using BLS and it was able to detect
the planet. We do not claim of course that this technique is new or
it does not work with other detection algorithms. We just give an
example showing that SIDRA is also able to detect exoplanets hidden
in a strong variability.

4 C O N C L U S I O N S

SIDRA is a blind detection and classification algorithm based on
Machine Learning – Random Forest technique. This paper is a
general presentation of the algorithm. We used simulated light
curves from five different classes. These are constant, transiting,
variables, microlensing and eclipsing binary light curves. Assum-
ing a 60 per cent decision probability, the algorithm success ratio is
95–100 per cent for microlensing, eclipsing binaries, variables and
constant light curves and 91 per cent for transits for Table 1 input
values. Also we test SIDRA with real light curves from the Kepler
mission. We detect and classify successfully 100, 98 and 93 per cent
of the constant, transiting and false alarm light curves. Furthermore,
we show a simulated example of SIDRA transit detection around a
variable host star.

We discuss the transiting exoplanet detection power compared
with BLS-like algorithms, but we would like to make clear that
we do not suggest to replace BLS with SIDRA, even if in our test
SIDRA detects 8 per cent more planets and is 1000 times faster. What
we suggest for a at least an exoplanet survey, is to include both
algorithms. SIDRA could be a very powerful tool, and could easily
detect/classify interesting objects which require further analysis.
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Figure 9. Top: a 30-d multiperiod variable star. Bottom: the same light
curve after removing strong periodicities.

4.1 Advantages

The algorithm could be easily modified for each team and project
and it is as general as possible, solving simultaneously different
types of light curves. On the other hand, BLS or high 	χ2 methods
for example, work only for transiting and eclipsing binary light
curves.

For eclipsing binaries, variables and microlensing light curves,
the algorithm is not only detecting the signal correctly but it also
minimizes the false alarms. In our case of 10 000 simulated light
curves, false alarms for these objects were eliminated.

For transiting light curves, it manages to detect more planets than
the classical method of BLS. Furthermore, SIDRA is much faster than

BLS. Once we train the network, the classification needs 4 ms for a
single light curve of 4300 data points, making SIDRA ideal for huge
surveys such as TESS and PLATO transiting exoplanet future space
missions. BLS needs ∼4 s in the same machine for the same light
curve.

Finally, SIDRA has the ability to become a huge network with
almost all kinds of light curves. We can not only classify variable
stars for example, but we can use many more classes in order to
identify the type of each variable. On the other hand, we are able
to search for non-periodic phenomena such as supernova and flare
stars.

4.2 Disadvantages

The major disadvantage of the algorithm is that it cannot resolve
physical characteristics from the light curves because of its nature.
For example we cannot extract the information about the radius of
the planet because we do not fit physical parameters but we calculate
statistical values of each light curve. Of course for the periodic
events, the information of the period is hidden in the autocorrelation
function, but still there is more information which is missing.

Finally, the algorithm works with a training light-curve set, which
means that we have to be very careful on the selection of features
and limits in order to maximize the success of the algorithm.

4.3 False alarms

The main problem of every detection and classification algorithm
is the false positive and negative alarms. Assuming a 20 000 light-
curve sample, we expect from SIDRA to solve the majority of the
light curves correctly. On the other hand, there are some limitations.
We assume that the 1 per cent of the theoretical sample contains
real planets, 15 per cent real variables, 10 per cent real eclipsing
binaries and 0 per cent real microlensing events. Table 2 shows the
results. From the total number the 95 per cent remain in our sample
after the decision probability 0.6 cut. These remaining light curves
(5 per cent) are flagged as unknown.

In order to deal with the 4 per cent of false alarm and the 5 per cent
of unknown light curves, we can decrease step-by-step the decision
probability from 0.6. This will increase the SIDRA sample, decreasing
the unknown light curves. Also, we can use a typical BLS algorithm.
It is not clear that BLS could solve the false alarms better than SIDRA

(Fig. 6). That depends on the S/N of each light curve but we can
use BLS as a separate tool. As we mention above, the decision
probability is a very important variable and we plan to study it in a
future publication.
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Table 2. Classes statistics assuming a 20 000 light-curve sample.

Classes Total number SIDRA sample ( > 0.6) Successful detection False alarms Unknown

Constant 14 800 14 060 13 357 703 as planets 740
Planet 200 190 175 15 as constant 10
Variable 3000 2850 2850 150
EB 2000 1900 1843 57 as planets 100

Total 20 000 19 000 (95 per cent) 18 225 (91 per cent) 775 (∼ 4 per cent) 1000 (5 per cent)
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