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ABSTRACT

We present results from 30 nights of observations of the intermediate-age Solar-metallicity
open cluster NGC 7789 with the WFC camera on the INT telescope in La Palma. From
∼900 epochs, we obtained lightcurves and Sloan r′−i′ colours for ∼33000 stars, with ∼2400
stars with better than 1% precision. We find 24 transit candidates, 14 of which we can assign
a period. We rule out the transiting planet model for 21 of these candidates using various
robust arguments. For 2 candidates we are unable to decide on their nature, although it
seems most likely that they are eclipsing binaries as well. We have one candidate exhibiting
a single eclipse for which we derive a radius of 1.81+0.09

−0.00RJ. Three candidates remain that
require follow-up observations in order to determine their nature.

Monte Carlo simulations reveal that we expected to detect ∼2 transiting 3d to 5d hot
Jupiter planets from all the stars in our sample if 1% of stars host such a companion and
that a typical hot Jupiter radius is similar to that of HD 209458b. Our failure to find good
transiting hot Jupiter candidates allows us to place an upper limit on the 3d to 5d hot
Jupiter fraction of 2.6% for all stars at the 1% significance level, and similar useful limits
on the hot Jupiter fraction of the different star types in our sample.
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1
Introduction

1.1 The Discovery Of Extra-Solar Planets

Some of the first steps towards answering one of humanity’s most fundamental questions
about the Universe, “Are we alone?”, lie in the search for planets that orbit stars other
than the Sun. Such planets are termed extra-solar planets (or exoplanets). Earth is the
only life-bearing planet that we know of and we might expect other solar systems to be
similar to our own by assuming that we are not special in any way. Once we know of
other planetary systems we may start to look for evidence of life through the detection of
biomarkers, chemical elements associated with life processes on Earth, in the spectra of
light from an exoplanet. Any speculation on what this life may actually be like lies in the
realm of science fiction for the near future.

Until recently the subject of extra-solar planets also lay in the realm of fiction rather
than fact. Hard evidence that these objects existed was only presented for the first time in
1992 with a rather unexpected detection. Wolszczan & Frail (1992) identified periodic varia-
tions (±2ms) in the time of arrival of pulses received from the 6.2ms pulsar PSR B1257+12.
This lead to the conclusion that two planets of masses similar to that of the Earth were
orbiting the pulsar at distances similar to that of Mercury from the Sun. Further work re-
vealed another even lower mass planet orbiting the pulsar and application of non-Keplerian
dynamics allowed the measurement of the true masses and orbital inclinations of the inner
two planets (Wolszczan 1994; Konacki, Maciejewski, & Wolszczan 2000; Konacki & Wol-
szczan 2003). Pulsars (rapidly rotating neutron stars) are formed during supernovae. The
detected planets may have survived a supernova explosion or they may have formed from
an accretion disk after the supernova phase. However, both of these evolutionary paths and
the hostile pulsar environment imply that these planets are unlikely to harbour life (as we
know it!).

The defining breakthrough came in November 1995 with the first detection by Mayor
& Queloz (1995) of a Jupiter mass planet orbiting a main sequence star, 51 Pegasi. By
measuring the radial velocity of the host star during four different epochs, periodic variations
were detected that could be fitted adequately by the presence of a 0.47MJ/ sin i mass
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planet orbiting in a 4.23 day circular orbit of radius 0.05AU, where MJ is the mass of
Jupiter and i is the orbital inclination to the line of sight (i = 90◦ when the line of sight
lies in the plane of the orbit). It is impossible to determine the value of sin i by use of the
radial velocity technique alone, and therefore the mass derived for the planetary companion
serves as a lower limit. Having said this, assuming that no particular orbital inclination is
preferred, then with greater than 99% probability the mass of the companion is ≤ 3.5MJ
(see Appendix A, Example 1). By considering constraints originating from the observed
rotational velocity of 51 Pegasi (Soderblom 1983; Baranne, Mayor, & Poncet 1979) and its
low chromospheric emission (Noyes et al. 1984), Mayor & Queloz (1995) were able to give
an upper limit of 2MJ for the mass of the companion.

This discovery was unexpected due to the high mass of the planetary companion orbiting
the star at such a small distance and it sparked a controversy about the nature of the radial
velocity variations. Some authors claimed to have detected 4.23 day periodic variations
in the shapes of various absorption lines from high resolution spectroscopy of the star 51
Pegasi (Hatzes, Cochran, & Johns-Krull 1997; Gray & Hatzes 1997) which could not be
explained by the orbiting planet hypothesis. Further, it was claimed that low order and
low degree nonradial oscillations could fully account for the radial velocity observations and
the changes in the shape of the line profiles. Brown et al. (1998) refuted these claims with
their own spectroscopic observations which did not show any variations in the line profiles.
Meanwhile Marcy et al. (1997) published more radial velocity measurements showing the
4.23 day periodicity and stating that the only viable interpretation was one of a Jupiter mass
companion. However, a general consensus was reached that the radial velocity variations
were most consistent with a planetary companion with the publication by Hatzes, Cochran,
& Bakker (1998) of a lack of spectral variability in 51 Pegasi, refuting their own previous
claims.

Soon after the discovery of 51 Pegasi b (the letter b denotes the reference to the planet
rather than the star), other groups announced more planet candidates from radial velocity
(RV) surveys (Butler & Marcy 1996; Marcy & Butler 1996; Butler et al. 1997) leading to
an explosion in the number of planetary detections. With an ever increasing time baseline
for the RV measurements, it has been possible to detect planets of longer periods, conse-
quently probing larger orbital distances from the host stars. The Mp sin i detection limit is
determined by the precision of the RV measurements which typically ranges from ∼10ms−1

for the smaller telescopes (Baranne et al. 1996) to ∼3ms−1 for the larger telescopes (Tinney
et al. 2001). Improvements in the efficiency of the spectrographs employed in the detection
of extra-solar planets has increased the precision obtained from the RV measurements to
around ∼1-2ms−1 (Pepe et al. 2004). However, there seems to be a fundamental limit to
the attainable precision defined by the intrinsic velocity stability of the target stars (Saar,
Butler, & Marcy 1998; Saar & Fischer 2000). Such RV variations, commonly called “jit-
ter”, are induced by the rotation of star spots and/or convective inhomogeneities and their
temporal evolution. It should also be noted that the RV technique is limited to surveying
bright target stars in order to provide the necessary high signal to noise (S/N) spectra. As
a consequence, this limits the RV surveys to Solar neighbourhood stars. There has also
been a tendency to target main sequence stars similar to our Sun in the quest to find a
Solar System analogue. For instance, the Anglo-Australian planet search targets F, G and
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K main sequence stars down to V=7.5 mag (Jones 2002).

By March 2000, 34 extra-solar planets were known from RV measurements and recently
detections at a rate of ∼20 planets per year have been the norm, almost exclusively discov-
ered by the RV method. The confirmed 123 planets to date (01/08/2004) are listed in an
extra-solar planet encyclopedia at the web address:

http://www.obspm.fr/encycl/cat1.html

1.2 Characteristics Of The Extra-Solar Planets

At this stage, clarification is required as to exactly what class of objects are defined to be
planets. An object with a mass greater than ∼0.08M⊙ ≡84MJ has a core temperature high
enough to ignite the thermonuclear fusion of hydrogen, and hence to self luminesce. This
object is a star and stars are thought to form from the collapse of rotating interstellar gas
and dust clouds via gravitational instability (Boss 1980). The minimum mass required to
form an object via the gravitational collapse of such a gas cloud is thought to lie in the
range 7-20MJ (Boss 1986). Objects formed this way with a mass less than ∼0.08M⊙ are
referred to as brown dwarfs (Tarter 1986; Burrows & Liebert 1993). They emit radiation
mainly in the infrared owing to the thermal energy of their creation and for brown dwarfs
with masses greater than ∼12MJ, deuterium fusion in their cores will contribute to their
luminescence.

Planets are thought to form via the agglomeration and accretion of material within the
gas and dust disk of a protostar, and planets do not luminesce via thermonuclear fusion
at any stage during their lifetimes. The lower mass limit of ∼12MJ for deuterium fusion
depends weakly on various factors (chemical composition etc.) and therefore a safe upper
mass limit for planets of ∼10MJ will be adopted here. It must be pointed out that since
brown dwarfs may also form as stellar companions, there lies a “grey” area between what
constitutes a planet and what constitutes a brown dwarf.

Table 1.1 lists the main properties of the extra-solar planets orbiting main sequence stars
discovered to date. These data are taken from the extra-solar planet encyclopedia mentioned
in Chapter 1.1, excluding 4 objects with inaccurately determined values of Mp sin i and
excluding 6 objects with Mp sin i ≥ 10MJ. We also exclude the planet OGLE-235/MOA-
53b which has incomplete data. The resulting catalogue presented in Table 1.1 consists
of 112 confirmed planets in 103 planetary systems, a statistically significant sample. It
is this sample that we use in the analysis of the following sections where we describe the
distributions of the various properties of the extra-solar planets which have started to reveal
a fine structure that until very recently was not apparent.
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Table 1.1: Extra-solar planet catalogue ordered by increasing period of innermost planetary companion.
Col. 4: Planetary semi-major axis (AU). Col. 5: Orbital period (days). Col. 6: Orbital eccentricity.

Planet No. Star Name Mp sin i (MJ) ap (AU) P (d) e

1 OGLE-TR-56 1.45* 0.0225 1.2 0.0
2 OGLE-TR-113 1.35* 0.0228 1.43 0.0
3 OGLE-TR-132 1.01* 0.0306 1.69 0.0
4 HD 73256 1.85 0.037 2.54863 0.038
5 HD 83443 0.41 0.04 2.985 0.08
6 HD 46375 0.249 0.041 3.024 0.04
7 HD 179949 0.84 0.045 3.093 0.05
8 HD 187123 0.52 0.042 3.097 0.03
9 τ Boo 3.87 0.0462 3.3128 0.018
10 HD 330075 0.76 0.043 3.369 0.0
11 BD-10 3166 0.48 0.046 3.487 0.0
12 HD 75289 0.42 0.046 3.51 0.054
13 HD 209458 0.69* 0.045 3.524738 0.0
14 HD 76700 0.197 0.049 3.971 0.0
15 51 Peg 0.468 0.052 4.23077 0.0
16 υ And 0.69 0.059 4.6170 0.012
17 1.19 0.829 241.5 0.28
18 3.75 2.53 1284 0.27
19 HD 49674 0.12 0.0568 4.948 0.0
20 HD 68988 1.90 0.071 6.276 0.14
21 HD 168746 0.23 0.065 6.403 0.081
22 HD 217107 1.28 0.07 7.11 0.14
23 HD 130322 1.08 0.088 10.724 0.048
24 HD 108147 0.41 0.104 10.901 0.498
25 HD 38529 0.78 0.129 14.309 0.29
26 55 Cnc 0.84 0.11 14.65 0.02
27 4.05 5.9 5360 0.16
28 Gl 86 4.0 0.11 15.78 0.046
29 HD 195019 3.43 0.14 18.3 0.05
30 HD 6434 0.48 0.15 22.09 0.30
31 HD 192263 0.72 0.15 24.348 0.0
32 Gliese 876 0.56 0.13 30.1 0.12
33 1.98 0.21 61.02 0.27
34 ρ CrB 1.04 0.22 39.845 0.04
35 HD 74156 1.86 0.294 51.643 0.636
36 HD 37605 2.85 0.26 55.2 0.736

continued on next page
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continued from previous page

Planet No. Star Name Mp sin i (MJ) ap (AU) P (d) e

37 HD 168443 7.7 0.29 58.116 0.529
38 HD 3651 0.2 0.284 62.23 0.63
39 HD 121504 0.89 0.32 64.6 0.13
40 HD 178911 B 6.292 0.32 71.487 0.1243
41 HD 16141 0.23 0.35 75.560 0.28
42 HD 80606 3.41 0.439 111.78 0.927
43 70 Vir 7.44 0.48 116.689 0.4
44 HD 216770 0.65 0.46 118.45 0.37
45 HD 52265 1.13 0.49 118.96 0.29
46 GJ 3021 3.21 0.49 133.82 0.505
47 HD 37124 0.75 0.54 152.4 0.10
48 1.2 2.5 1495 0.69
49 HD 219449 2.9 0.3 182 0.0
50 HD 73526 3.0 0.66 190.5 0.34
51 HD 104985 6.3 0.78 198.2 0.03
52 HD 82943 0.88 0.73 221.6 0.54
53 1.63 1.16 444.6 0.41
54 HD 169830 2.88 0.81 225.62 0.31
55 4.04 3.60 2102 0.33
56 HD 8574 2.23 0.76 228.8 0.40
57 HD 89744 7.99 0.89 256.6 0.67
58 HD 134987 1.58 0.78 260 0.25
59 HD 12661 2.30 0.83 263.6 0.096
60 1.57 2.56 1444.5 0.1
61 HD 150706 1.0 0.82 264.9 0.38
62 HD 40979 3.32 0.811 267.2 0.25
63 HD 59686 6.5 0.8 303 0.0
64 HD 810 2.26 0.925 320.1 0.161
65 HD 142 1.36 0.980 338.0 0.37
66 HD 92788 3.8 0.94 340 0.36
67 HD 28185 5.6 1.0 385 0.06
68 HD 142415 1.62 1.05 386.3 0.5
69 HD 177830 1.28 1.00 391 0.43
70 HD 4203 1.65 1.09 400.944 0.46
71 HD 108874 1.65 1.07 401 0.20
72 HD 128311 2.63 1.06 414 0.21
73 HD 27442 1.28 1.18 423.841 0.07
74 HD 210277 1.28 1.097 437 0.45
75 HD 19994 2.0 1.3 454 0.2

continued on next page
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continued from previous page

Planet No. Star Name Mp sin i (MJ) ap (AU) P (d) e

76 HD 20367 1.07 1.25 500 0.23
77 HD 114783 0.9 1.20 501.0 0.1
78 HD 147513 1.0 1.26 540.4 0.52
79 HIP 75458 8.64 1.34 550.651 0.71
80 HD 222582 5.11 1.35 572.0 0.76
81 HD 65216 1.21 1.37 613.1 0.41
82 HD 160691 1.7 1.5 638 0.31
83 HD 141937 9.7 1.52 653.22 0.41
84 HD 41004A 2.3 1.31 655 0.39
85 HD 47536 4.96 1.61 712.13 0.20
86 HD 23079 2.61 1.65 738.459 0.10
87 16 Cyg B 1.69 1.67 798.938 0.67
88 HD 4208 0.80 1.67 812.197 0.05
89 HD 114386 0.99 1.62 872 0.28
90 γ Cephei 1.59 2.03 902.96 0.2
91 HD 213240 4.5 2.03 951 0.45
92 HD 10647 0.91 2.10 1040 0.18
93 HD 10697 6.12 2.13 1077.906 0.11
94 47 Uma 2.41 2.10 1095 0.096
95 0.76 3.73 2594 0.1
96 HD 190228 4.99 2.31 1127 0.43
97 HD 114729 0.82 2.08 1131.478 0.31
98 HD 111232 6.8 1.97 1143 0.20
99 HD 2039 4.85 2.19 1192.582 0.68
100 HD 50554 4.9 2.38 1279.0 0.42
101 HD 196050 3.0 2.5 1289 0.28
102 HD 216437 2.1 2.7 1294 0.34
103 HD 216435 1.49 2.7 1442.919 0.34
104 HD 106252 6.81 2.61 1500 0.54
105 HD 23596 7.19 2.72 1558 0.314
106 14 Her 4.74 2.80 1796.4 0.338
107 HD 72659 2.55 3.24 2185 0.18
108 HD 70642 2.0 3.3 2231 0.1
109 HD 33636 9.28 3.56 2447.292 0.53
110 ǫ Eridani 0.86 3.3 2502.1 0.608
111 HD 30177 9.17 3.86 2819.654 0.30
112 Gl 777A 1.33 4.8 2902 0.48

*The mass Mp of the extra-solar planet is listed instead of the value of Mp sin i.
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Figure 1.1: Histogram of the mean mass of the extra-solar planets.

1.2.1 The Mass And Period Distributions

Radial velocity measurements of a planet host star supply the observable quantity Mp sin i
as a lower limit to the mass of the extra-solar planet (see Section 2.1). Making the as-
sumption that the orbital orientation of the extra-solar planet is random means that we
can calculate the mean mass 〈Mp〉 of the extra-solar planet as 〈Mp〉 = π

2 Mp sin i (see Ap-
pendix A, Example 2). Figure 1.1 shows a histogram of the mean mass distribution for
the extra-solar planets listed in Table 1.1. The mean mass distribution rises towards lower
masses down to ∼1MJ. The failure to rise any further for even lower masses is due the
limited detectability of these planets using the RV technique.

Figure 1.2(a) shows a histogram of the period distribution for the extra-solar planets.
The period distribution shows a sharp cut off at around ∼3 days, especially if we ignore
the 3 recently discovered OGLE planets that seem to form part of a new class of planets
(“very hot Jupiters”). The period distribution then drops towards higher periods and rises
abruptly again for periods ∼>100 days, revealing a “period valley” for periods between ∼10
and ∼100 days (Udry, Mayor, & Santos 2003). Observationally, this may be explained by
the combination of two different planet populations, a lower mass planet population that
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(a) Histogram of the period of the extra-solar planets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Period (days)

(b) Cumulative distribution function against period for the less massive extra-solar planets
(〈Mp〉 ≤ 3MJ with the continuous line) and for the more massive extra-solar planets (〈Mp〉 >
3MJ with the dashed line).

Figure 1.2: Period histogram and cumulative distribution function
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Figure 1.3: Plot of mean mass against period for the extra-solar planets. Filled circles represent planets
that orbit in single-star systems. Circles with dots represent planets that orbit in multiple-star systems.

peaks at short periods and extends to longer periods, and a higher mass planet population
that almost exclusively has periods ∼>100 days. The existence of the two populations is
illustrated clearly in Figure 1.2(b) where we plot the cumulative distribution function (CDF)
against period for two planet populations, the less massive extra-solar planets (〈Mp〉 ≤ 3MJ
with the continuous line) and the more massive extra-solar planets (〈Mp〉 > 3MJ with the
dashed line). The statistical significance of the lack of higher mass planets on short periods
has been verified by Zucker & Mazeh (2002) and Udry, Mayor, & Santos (2003) using the
fact that if such planets existed then they should be easily detectable by the RV technique.

Figure 1.3 shows a scatter plot of the mean mass against period for the extra-solar
planets. The rectangular region in the upper left of the diagram delimited by the dashed
line highlights the region with few higher mass planets at short periods (〈Mp〉 > 3MJ and
P ≤ 100 days). In fact, if you remove the planets that orbit in multiple-star systems (circles
with dots), then this region becomes almost devoid of data points, suggesting that planetary
formation and evolution in multiple-star systems could follow different paths to those in
single-star systems. The other rectangular region in the lower right of the diagram, also
delimited by a dashed line, reveals a lack of lower mass planets at long periods (〈Mp〉 ≤ 1MJ
and P ≥ 100 days). This feature could be related to the observational bias from the RV
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Figure 1.4: Plot of orbital eccentricity against period for the extra-solar planets.

technique that lower mass and longer period planets are more difficult to detect. However,
Monte-Carlo simulations by Udry, Mayor, & Santos (2003) show that this region is indeed
devoid of planets with a 99.97% confidence level.

1.2.2 The Orbital Eccentricity And Period Correlation

The extra-solar planets with the smallest orbital semi-major axes (shortest periods) are
likely to have undergone orbital circularisation via tidal interaction with the host star. A
scatter plot of orbital eccentricity against period (Figure 1.4) clearly shows that all extra-
solar planets with periods of less than 6.0 days have orbital eccentricities of less than
0.1 (lower left rectangular region delimited by a dashed line) indicative of circular orbits.
Removing these planets from our sample and calculating the Spearman’s rank correlation
coefficient between orbital eccentricity e and period P yields r95 = 0.2277 . . . ≈ 0.228.
Assuming a null-hypothesis that e and P are uncorrelated allows one to calculate, for a
given N , the probability of obtaining a value of |rN | greater than or equal to k where
k ∈ R. This probability, denoted by P(|rN | ≥ k), is called the statistical significance of
the test and the smaller the value of P(|rN | ≥ k), the less likely we are to reject the null-
hypothesis when it is actually correct (Type I error). If we choose a significance level α
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and we have P(|rN | ≥ k) ≤ α, then we can reject the null-hypothesis at the α significance
level. Since P(|rN | ≥ 0.228) = 0.0264 . . . ≤ 0.05 for N = 95, we can reject the null-
hypothesis that e and P are uncorrelated at the α = 0.05 significance level, and reasonably
conclude that e and P are indeed correlated in some way. As an aside, it is interesting to
note that without removing the extra-solar planets with P ≤ 6.0 days from the sample,
r112 = 0.4888 . . . ≈ 0.489 and P(|rN | ≥ 0.489) = 4.54 . . . × 10−8 ≤ 1.0 × 10−7 for N = 112.

1.2.3 Hot Jupiters And Their Properties

The discovery of close-in Jupiter-mass companions to main sequence stars was not antici-
pated by the pre-discovery theories of planetary formation (see Section 1.3). Such planets
were termed “hot Jupiters” due to the expected heating of the planets by the host stars
and they were found to have a period cut off at the low end of the period distribution of
∼3 days. It was only very recently that planets with a period of less than ∼3 days were
discovered: OGLE-TR-56b (Konacki et al. 2003b), OGLE-TR-113b and OGLE-TR-132b
(Bouchy et al. 2004). Such planets have been termed “very hot Jupiters”.

In this section, we will consider the subsample of extra-solar planets termed “hot
Jupiters” defined by P ≤ 10.0 days and excluding the “very hot Jupiters”. The upper
limit to the period is chosen to coincide with the start of the “period valley” discussed in
Section 1.2.1 but otherwise it is arbitrary. We will try to derive the simplest continuous
underlying PDFs for the period P , orbital semi-major axis ap, eccentricity e and mean mass
〈Mp〉. We will use these analytic representations of the hot Jupiter distribution functions
in Chapter 5 when doing Monte Carlo simulations. The analysis below follows the method
of Heacox (1999).

Let us define the empirical cumulative distribution function (ECDF) for ordered data
x1 ≤ x2 ≤ . . . ≤ xN by:

F (xj) =
(j − 0.5)

N
for j ∈ {1, 2, . . . , N} (1.1)

We have fitted a continuous function G(x) to each ECDF by iterating a weighted least
squares fit with weights 1/σ2

F (xj)
(Stuart & Ord 1987) defined by:

σ2
F (xj)

=
G(xj)(1 − G(xj))

N
(1.2)

Figure 1.5 shows plots of F (xj) against xj for each of P , ap, e and 〈Mp〉. Each plot in
Figure 1.5 shows the specific function fitted to the ECDF as a continuous line and the ±1σ
curves as dashed lines. The results of the fits are shown in Table 1.2.

Analysis of the statistical significance of these fits has been done using the Kolmogorov-
Smirnov (K-S) goodness of fit test. The K-S test is the most appropriate test in this case
(Heacox 1999) since we have individual data points (not grouped data). The K-S statistic
DN is defined by:

DN = max
j∈{1,2,...,N}

|G(xj) − F (xj)| (1.3)

Assuming a null-hypothesis that xj is drawn from the underlying CDF G(x) allows one to
calculate, for a given N , the probability of obtaining a value of DN greater than or equal to
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(a) Plot of F (P ) against P for the hot Jupiters along
with the fitted function G(P ).
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(b) Plot of F (ap) against ap for the hot Jupiters along
with the fitted function G(ap).
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(c) Plot of F (e) against e for the hot Jupiters along
with the fitted function G(e).
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(d) Plot of F (〈Mp〉) against 〈Mp〉 for the hot Jupiters
along with the fitted function G(〈Mp〉).

Figure 1.5: ECDF plots for each of P , ap, e and 〈Mp〉.

Table 1.2: Results of the fits of G(x) to F (x) including the K-S statistic (Col. 7) and its significance (Col. 8).

x Units Of x G(x) u σu v σv k = D17 P(DN ≥ k)

P d u + v log(x) −0.734 0.088 2.04 0.13 0.178 0.608
ap AU u + v log(x) 4.63 0.23 3.18 0.18 0.176 0.626
e − u + v

√
x 0.112 0.027 2.32 0.12 0.211 0.389

〈Mp〉 MJ u + v log(x) 0.505 0.020 0.655 0.035 0.151 0.797



1.2 Characteristics Of The Extra-Solar Planets 13

k where k ∈ R. This probability is denoted by P(DN ≥ k). Table 1.2 reports the values of
k = D17 obtained for the fits along with the probabilities P(DN ≥ k) for N = 17. One can
see from Table 1.2 that we cannot reject the null-hypothesis at the α = 0.05 significance
level for any of the fits. Hence, for any of P , ap, e and 〈Mp〉, we do not need to hypothesise
a closer fit to the data. Summarising the results, we have CDFs of the form:

G(P ) = u + v log(P )

G(ap) = u + v log(ap)

G(e) = u + v
√

e

G(〈Mp〉) = u + v log(〈Mp〉)
(1.4)

The corresponding PDFs are found by differentiating:

g(P ) ∝ P−1

g(ap) ∝ a−1
p

g(e) ∝ e−0.5

g(〈Mp〉) ∝ 〈Mp〉−1

(1.5)

1.2.4 Planet Frequency And Stellar Metallicity

The question “What fraction of Sun-like stars have planets, and how does it depend on the
host star properties?” is a very important one for planetary formation theories in that the
answer may be compared to the theoretical predictions of various models, allowing us to
decide which model is most likely to be correct. As humans, we also want to know if the
factors that are responsible for our origin and existence have selected a non-typical location.

The data that we have on extra-solar planets has already shown that Jupiter is a typical
giant planet in the sense that it lies in the most densely occupied region of the log(Mp) −
log(P ) plane (Lineweaver & Grether 2002; Lineweaver, Grether, & Hidas 2003). Analysis
of the ∼1800 Sun-like stars that were being monitored by RV surveys at the end of 2003
has revealed the following facts (Lineweaver & Grether 2003):

1. At least ∼5% of target stars possess at least one planet.

2. Limiting the sample to target stars that have been monitored for ∼>15 years indicates
that at least ∼11% possess at least one planet.

3. Limiting the sample to target stars that have been monitored for ∼>15 years and whose
low surface activity allows the most precise RV measurements indicates that at least
∼25% possess at least one planet.

It is clear that the longer we survey stars with the RV technique, and the better the accuracy
that we achieve, the greater the fraction of stars found to harbour at least one planet. For
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Figure 1.6: Taken from Santos, Israelian, & Mayor (2004). Left: Normalised histogram of the stellar
metallicities for planet host stars (shaded) and for “single” stars (clear). Right: The percentage of stars
with planets against stellar metallicity.

the work in this thesis, the most pertinent question is “What fraction of main sequence
stars have hot Jupiters, and how does this depend on the host star properties?”. Butler
et al. (2000) provide an estimate that ∼1% of nearby Sun-like stars (late F and G dwarfs)
host a hot Jupiter (3.0 ≤ P ≤ 5.0 days).

Recently it has come to light that stars with planets seem to be particularly metal rich
when compared with “single” (non-binary and no planet found to date) field dwarfs (Santos
et al. 2003; Santos, Israelian, & Mayor 2004). The metallicity of a star, denoted by [Fe/H]
and with units dex, is defined relative to the Solar metallicity by:

[Fe/H] = log(NFe/NH)∗ − log(NFe/NH)⊙ (1.6)

where log(NFe/NH)∗ is the log of the ratio of iron abundance to hydrogen abundance for the
star, and log(NFe/NH)⊙ is the same ratio for the Sun. Figure 1.6, taken from Santos, Is-
raelian, & Mayor (2004), shows on the left a normalised histogram of the metallicities for two
star subsamples taken from the volume limited CORALIE star sample (Udry et al. 2000).
The shaded histogram represents the metallicity distribution of the 48 stars with known
planets, and the clear histogram represents the metallicity distribution of 875 non-binary
stars with no planet found to date. One can clearly see the trend to higher metallicities for
stars with planets compared to those stars without. Although some authors have claimed
that the source of the metallicity excess for planet host stars lies in the process of planetary
formation via accretion of disk material and/or planets themselves (Gonzalez 1998), the
strongest evidence points to a primordial origin (Sadakane et al. 2002; Santos et al. 2003).

The right hand diagram in Figure 1.6 shows how the percentage of stars with planets
depends on stellar metallicity. This diagram clearly demonstrates that the probability of
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finding a planet is a strong function of the host star metallicity. Approximately ∼28% of
stars with 0.3 ≤ [Fe/H] ≤ 0.4 dex host a planet in the CORALIE sample compared to only
∼3% of stars with Solar metallicity ([Fe/H]∼0.0 dex) hosting a planet. This result will
clearly be of influence in maximising the planet yield of any survey, although choosing high
metallicity target stars will introduce a strong bias in the statistics of any planets that are
found.

1.2.5 The Variety Of Extra-Solar Planets

At this point it would be appropriate to highlight the variety of extra-solar planetary
systems detected to date with a couple of examples. We have already met the hot Jupiters
(and very hot Jupiters), and also the pulsar planets, both of whose discovery surprised the
astronomical community. It is interesting to note that we know of 8 multiple planetary
systems to date (see Table 1.1). In particular the star υ Andromedae has a triple planetary
system, and it was the first reported multiple planetary system around a main sequence star
(Butler et al. 1999). The system consists of a hot Jupiter and two planets more massive
than Jupiter in eccentric orbits with semi-major axes 0.83AU and 2.5AU. This is obviously
not a Solar System analogue, but it illustrates the possibility that stars with a single extra-
solar planet may have other planetary companions with periods too long or masses too small
to have been detected yet. Planetary systems are not limited to single stars either. The
stellar system of 16 Cygni is actually a triple star system composed of a wide visual binary
of two G dwarfs and a distant M dwarf. The G2.5V star 16 Cygni B has a Jupiter mass
planetary companion in a very eccentric orbit of semi-major axis 1.7AU (Cochran et al.
1997). Such a variety of planetary systems (in which we must include our own) challenges
our theories planetary formation and helps to constrain the likely formation scenarios. Thus
it is imperative to keep expanding our database of known extra-solar planets over a range
of stellar types and environments.

1.3 Star And Planetary Formation

1.3.1 Star Formation

Stars are thought to form from gravitational instabilities in interstellar clouds of gas and
“dust” grains which lead to collapse and fragmentation (Shu, Adams, & Lizano 1987; Boss
1987). A gravitational instability occurs when the gravitational binding energy of a certain
region in the interstellar cloud exceeds the thermal energy (called the Jeans instability
criterion). Such an instability may be caused by a shockwave from a supernova for example.
The details of the collapse, including the effects of stellar rotation and magnetic fields, are
complex and incompletely known, but they may be roughly split into two stages.

The first stage is characterised by free-fall collapse due to the fact that the inner parts of
the cloud contract under self-gravity faster than the outer parts of the cloud. The free-fall
time for a test particle of mass m at the edge of a uniformly collapsing spherical cloud of
mass M , radius R and initial density ρ0 may be calculated by considering that it will follow
an orbit of semi-major axis a = R/2, period P and eccentricity e = 1. Substituting the
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expression for the density of the cloud:

M =
4πR3ρ0

3
(1.7)

into Kepler’s third law:

P 2 =
4π2a3

GM
(1.8)

and using the fact that a = R/2 gives:

P =

√

3π

8Gρ0
(1.9)

The free-fall time tff is half of the period P and hence for a cloud of typical density
10−15kg/m3 the time scale for initial collapse is tff ∼ 105 years.

Interstellar clouds rotate at least a bit, and an isolated rotating cloud must conserve
angular momentum. Hence, as the cloud collapses and each particle moves closer to the axis
of rotation, the cloud starts to rotate faster. At some point for each particle, the angular
speed will become high enough that the centripetal acceleration balances the gravitational
force and the particle stops moving closer to the axis of rotation. However, each particle will
continue moving parallel to the axis of rotation and as a result, most of the infalling material
misses the protostar and ends up in the equatorial plane. This leads to the formation of a
disk structure from the initial “spherical” configuration of the interstellar cloud.

The next stage involves the accretion of gas and dust from the disk onto the central
object (due to the gravity of the object itself) which heats the centrally condensed gas
by compression until nuclear fusion occurs. Infall from the surrounding interstellar cloud
replenishes the disk material. The luminescent central object, called a protostar, is formed
on timescales of 105−106 years. A hydrodynamic wind from the protostar, channelled by
the geometry of the disk, causes bipolar outflows of gas which carry away ∼10−6−10−4M⊙

per year. This mass loss from the system also carries away angular momentum that brakes
the rotation of the protostar in ∼105 years.

1.3.2 Planet Formation

Planet formation is thought to follow on from the process of star formation via the agglom-
eration of material within the circumstellar (protoplanetary) disk (Perryman 2000; Ida &
Lin 2004). A dust layer starts to form near the central plane of the disk via the sedimenta-
tion of dust grains. When the density of the dust layer exceeds some critical value, the dust
grains start to stick together as they collide, forming conglomerations called planetesimals.
The planetesimals also start colliding with one another, the majority of the collisions being
non-destructive, so that the planetesimals start to grow in size. The larger a planetesimal
the faster it grows leading to runaway growth. The largest planetesimals sweep up all other
planetesimals with orbital semi-major axes similar to their own to become the first proto-
planets. The regions near the protoplanets are continuously supplied with planetesimals
from the rest of the disk by orbital migration due to gravitational scattering and viscous
drag from the disk gas. When a protoplanet reaches a mass of ∼10M⊕ (where M⊕ is the
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Table 1.3: Approximate duration and typical particle/object sizes for each of the stages in the core accretion
model of planetary formation (Zeilik & Gregory 1998; Perryman 2000).

Stage Typical Duration Typical Particle Size/Mass

Sedimentation of dust grains 104−105 years 0.01µm−1µm
Formation of planetesimals 104−105 years 1m−1km
Formation of protoplanets 105−106 years 10−3M⊕−10−1M⊕

Formation of planets 107−109 years 10−1M⊕−10MJ

mass of the Earth), it will start to accrete gas in addition to planetesimals. As this process
of planet formation is continuing, the gas and dust of the disk is being blown gradually out
of the system by the stellar wind emanating from the protostar until eventually there is
very little left to be accreted by the protoplanets. With the supply of planetesimals running
out as well, the growth of the protoplanets finally ceases. Table 1.3 shows the approximate
timescales and particle/object sizes for each of the stages described above. It should be
noted that the timescales shown vary significantly with orbital radius and that the exact
details of the formation theory are poorly understood, and so these values should be treated
with caution.

The core accretion model described above predicts that the gas giants will form further
out in the protosolar system and the terrestrial planets closer in, just as in our own Solar
System. This is explained by the following:

1. The temperature close to the protostar is too high for gas (and ice) accretion to take
place.

2. The gas is blown away first from the inner parts of the protostellar disk.

3. The total mass of the disk material closer in to the protostar is smaller.

As one can see, the core accretion model alone is not sufficient to account for the
existence of hot Jupiters. To deal with this, it has become common to invoke orbital
migration.

1.3.3 Planet Migration

The possibility of planetary migration was actually suggested before the discovery of hot
Jupiters (Goldreich & Tremaine 1980). A protoplanet may undergo rapid Type I orbital
migration towards the star if it is not yet massive enough to open and sustain a gap in
the disk. The migration occurs as a result of torque asymmetries due to the gravitational
interaction of the protoplanet with the disk. If the orbital decay time is shorter than the life
of the disk, then the protoplanet is in danger of being accreted into the star. At ∼1AU the
migration timescale for a ∼1M⊕ protoplanet is only 104−105 years (Ward 1997) compared
to a disk lifetime of ∼107 years (Nakano 1987). Also, Type I migration seems inconsistent
with the prolific formation of giant extra-solar planets since the protoplanetary cores have
a tendency to rapidly migrate to the proximity of their host stars prior to gas accretion.



1.4 Summary 18

If gap formation in the disk is successful due to a massive enough protoplanet, then Type
II migration will occur. In this case the protoplanet has effectively established a barrier to
any radial flow of disk material due to viscous diffusion and the protoplanet becomes locked
into the disk (Lin & Papaloizou 1986). Orbital migration is in either direction, and although
slower than Type I migration, it may still put a protoplanet in danger of destruction under
the right conditions.

The migration scenarios give a possible explanation as to how a gas giant planet may
move from the outer parts of a protoplanetary system, where it is most likely to form, to the
inner parts of the system. However, without a mechanism for stopping orbital migration,
any protoplanet that migrates to very close distances to the host star (∼0.05AU) is most
likely to be accreted and we would not observe such an abundance of hot Jupiters. Several
potential mechanisms have been put forwards as to how an inwardly migrating planet may
be halted at small orbital radii (Lin, Bodenheimer, & Richardson 1996; Trilling et al. 1998).
These include the hypothetical existence of a low-density zone maintained by magnetic
coupling to the disk, tidal interaction with the spinning star and mass transfer from the
protoplanet to the star.

1.4 Summary

In this first chapter we have attempted to give the reader an overview of the history of
extra-solar planet research, an area of scientific study that has burst to the forefront of the
astronomy scene in the space of a decade. The radial velocity technique has dominated the
field so far, but this may change in the near future, a possibility we explore in the next
chapter. A detailed overview of the characteristics of the extra-solar planets discovered to
date has been presented highlighting the finer structure that has not been apparent until
recently. We have included our own statistical analysis of the properties of the extra-solar
planets as a whole and also concentrating on the class of planets called hot Jupiters, which
is of special relevance to the rest of the thesis. We have also considered the frequency
of extra-solar planets and the properties of the host stars. Finally we have given a brief
summary of star and planetary formation theory, and how the latter has had to invoke
migration theory in order to explain the properties of the known extra-solar planets.



2
A Menagerie Of Detection Techniques

Up to now, almost all of the extra-solar planet detections have been made by the radial
velocity technique despite a number of alternative viable methods being pursued vigorously.
This chapter deals with the question “What techniques are being brought to bear on the
problem of extra-solar planet detection and what results may we reasonably expect from
them?”.

We shall not review every possible detection technique that has been invented (of which
there are many). We shall simply review the techniques that have had and/or are expected
to have (in the near future) a lot of success. A standard set of parameters is defined below
which shall be used throughout, and we assume for simplicity that the star in question has
a single planetary companion. For a list of the relevant data/constants that has been used,
see Appendix B.

L∗,Lp − Luminosity of the star/planet.

M∗,Mp − Mass of the star/planet.

R∗,Rp − Radius of the star/planet

a∗,ap − Semi-major axis of the orbit of the star/planet about the centre of mass.

P − Orbital period of the planet.

e − Orbital eccentricity.

i − Orbital inclination.

ω − Longitude of periastron.

2.1 Radial Velocity

An extra-solar planet and its host star orbit their common centre of mass, and hence the
star undergoes periodic variations in its velocity along the line of sight (radial velocity).
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The semi-amplitude K of this variation (see Appendix C, Theorem 3) is given by:

K =

(

2πG

P

)1/3 Mp sin i

(M∗ + Mp)2/3(1 − e2)1/2
(2.1)

For a circular orbit (e = 0) and for Mp ≪ M∗, the semi-amplitude reduces to:

K =

(

2πG

P

)1/3 Mp sin i

M
2/3
∗

(2.2)

Due to the influence of Jupiter, the Sun has K ≈ 12.5ms−1 for i = 90.0◦ with a period of
11.9 years. Due to the influence of the Earth, the Sun has K ≈ 0.09ms−1 for i = 90.0◦

with a period of 1.0 years. With the best current precision in radial velocity measurements
at ∼2ms−1, one can see that observations over a period of 12 years are sufficient to de-
tect Jupiter, but there is no chance of detecting the Earth. Also, the sin i dependence in
Equation 2.1 means that orbital systems seen face on (i = 0.0◦) result in no radial velocity
perturbation.

A radial velocity measurement of a star is made by obtaining a high signal to noise
spectrum using a high resolution spectrograph with typically an I2 gas absorption cell. The
I2 cell provides a wealth of absorption lines superimposed on the stellar spectral lines. This
facilitates the measurement of the Doppler shift ∆λ of the light of wavelength λ arriving
from the star relative to the Earth, yielding the star’s radial velocity vr = c∆λ/λ. Using an
accurate ephemeris to correct for the Earth’s motion, a set of radial velocity measurements
well sampled in time will yield the heliocentric radial velocity curve for the star. The curve
may be fitted by the model in Appendix C (Theorem 2), yielding values for P , e, ω and
Mp sin i/(M∗ + Mp)2/3. The value of M∗ may be estimated from the spectral type of the
star under observation, and using the approximation M∗ + Mp ≈ M∗ for Mp ≪ M∗, one
may estimate Mp sin i, a lower limit for the value of Mp. To obtain a value of the mean
star-exoplanet distance a = a∗ + ap ≈ ap, one may use Kepler’s third law (Equation 1.8
with M = M∗ + Mp ≈ M∗).

The radial velocity technique has been used to discover almost all confirmed extra-solar
planets to date making it the most important method so far in the hunt for these objects.
In Sections 1.1 and 1.2.5 we have mentioned the relevant references to RV surveys and their
discoveries. We have also already noted the Mp sin i ambiguity (Appendix A), the intrinsic
limit to the precision of RV measurements due to “jitter”and the limitation of a RV survey
to the Solar neighbourhood (Section 1.1).

2.2 Direct Imaging And Reflected Light

Planets have no intrinsic optical emission. However, a planet will reflect star light from its
atmosphere/surface and detecting this star light is a very exciting prospect since it would
provide direct and indisputable evidence that extra-solar planetary systems exist. An extra-
solar planet will reflect only a small fraction of the incident radiation of wavelength λ in
the direction of the line of sight. This fraction depends on the albedo and light scattering
properties of the atmosphere/surface, and the phase α of the planet in its orbit. Writing
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this fraction as p(λ, α) and considering that the planet is illuminated on one side only, then
we may calculate the luminosity of the extra-solar planet Lp via reflected light as:

Lp = p(λ, α)

(

R2
p

2a2

)

L∗ (2.3)

At a distance of 10pc from our Solar System, Jupiter and the Sun have an angular separation
of ∼0.52′′ at maximum elongation. In this configuration we would observe half of the
planetary disk as illuminated (a half-Jupiter), which leads us to set p(λ, α) ≈ 0.5 in the
best case scenario. Hence Equation 2.3 yields a contrast of Lp/L∗ ≈ 2.1 × 10−9. From the
ground, the planetary signal is immersed in the photon noise of the telescope’s diffraction
profile and the star’s seeing profile (typical seeing 0.5′′ − 1.0′′) making it undetectable.

Efforts are under way to minimise these problems by employing the following techniques:

1. Suppressing scattered light using a coronograph.

2. Reduction of the angular size of the star profile using adaptive optics.

3. Observing in the infrared where the value of Lp/L∗ is around 105 times larger (due
to thermal emission from the planet itself).

4. Using interferometric nulling to cancel out the light from the star.

5. Observing from space to eliminate the effects of atmospheric turbulence.

Although the direct imaging method has not been successfully applied to extra-solar planet
detection so far, it will in the future be capable of providing broadband colours, spec-
tral features and spectral energy distributions, giving constraints on the temperature and
chemical composition of the planet atmosphere/surface, including revealing the presence of
biomarkers (O3, O2, H2O etc.). This makes direct imaging the technique which has the
potential to produce results with the biggest scientific impact.

Individually resolving the star and planet is not absolutely necessary in order to detect
the reflected light from the planet. The reflected light from an extra-solar planet is com-
posed of a copy of the star’s emission spectrum and an imprint of the planet’s absorption
spectrum, both red/blue shifted appropriately due to the orbital motion of the extra-solar
planet and modulated in strength by the function p(λ, α). One may obtain a series of
high resolution spectra and, by carefully modelling and removing the star’s spectrum, the
reflected light spectrum will be left. A total of three extra-solar planetary systems have
been observed in this way (Cameron et al. 2002; Leigh et al. 2003a; Leigh et al. 2003b).
Although the reflected spectra were not detected unambiguously, the technique was used
to place limits on the geometric albedo p of each extra-solar planet (p < 0.22 for υ And b,
p < 0.39 for τ Boo b and p < 0.12 for HD 75289b).

2.3 Gravitational Microlensing

Gravitational lensing is the focusing of light rays from a distant source by an intervening
massive object (called the lens). The focusing of the light rays produces a magnification
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Figure 2.1: General configuration of a gravitational lens.

of the brightness of the source object. Figure 2.1 shows the configuration of a typical
gravitational lens in which the observer sees two images of the source object. If the source
lies directly behind the lens as viewed by the observer, then the source forms an image ring
at a radius RE called the “Einstein radius” of the lens.

Microlensing is the term used to describe gravitational lensing in which the source
images as viewed by the observer are too close to be resolved. The Einstein ring radius
(Wambsganss 1997) is given by:

RE =

[

4GML
c2

(DS − DL)DL
DS

]1/2

(2.4)

where ML is the mass of the lens object and the distances DS and DL are as defined in
Figure 2.1. The Einstein angle θE is RE expressed in angular units:

θE =
RE
DL

(2.5)

Looking at source stars in the Galactic bulge (DS ≈ 8kpc) and considering lens stars at a
distance DL ≈ 4kpc with approximately solar masses (ML ≈ 1M⊙) yields θE ≈ 0.001′′.
The angular separation of the two source images is approximately 2 θE ≈ 0.002′′ which is
clearly unresolvable by even the best adaptive optics from the ground (resolution ∼0.1′′).

As the source, lens and observer are all in motion, the source will appear to move relative
to the lens as viewed by the observer, and the source will undergo a characteristic increase
and then decrease in brightness. This is the only observable signature of a microlens, but
it is distinguishable from peculiar intrinsic source variability by its achromatic nature. The
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microlensing magnification A(t) of the source as a function of time t is given by:

A(t) =
u(t)2 + 2

u(t)(u(t)2 + 4)1/2
(2.6)

where u(t) is the projected distance between the lens and the source in the lens plane in
units of RE as a function of time t. Precise alignment of the lens and source is required
for a detectable source brightening and hence the probability of substantial microlensing
magnification is extremely small (∼ 10−6 for source stars in the Galactic bulge). Timescales
for a typical Galactic bulge microlensing event range from days to months (Wambsganss
1997).

The presence of a planet orbiting the lens at a projected distance from the lens close
to the Einstein radius (0.6−1.6RE) will produce a secondary amplification of the source,
shorter in timescale than the primary event (of the order of a couple of hours for an Earth
mass planet and of the order of a day for a Jupiter mass planet), but theoretically of unlim-
ited magnification. Again, assuming DS ≈ 8kpc for Galactic bulge stars and considering a
lens star at a distance DL ≈ 4kpc with ML ≈ 1M⊙ yields RE ≈ 4.0AU, similar to Jupiter’s
distance from the Sun.

With the advent of observational programmes monitoring millions of stars (OGLE:
Udalski et al. 1993; MACHO: Alcock et al. 1993 etc.), hundreds of photometric microlens-
ing events have now been observed. A small subset of the already rare microlensing events
have revealed anomalies which are due to a number of different scenarios including binary
lenses (Udalski et al. 1994) and the effect of the Earth’s motion around the Sun (Alcock
et al. 1995). It is only recently that the first unambiguous planetary microlensing event
has been detected (Bond et al. 2004) from the perturbation of the simple lightcurve of an
isolated point lens.

The main drawback to the planetary microlensing technique is that a microlensing
event only occurs once, requiring all relevant observations to be taken during the event.
The only follow-up observations that may be possible are those of the lens star in the
years following the event due to the proper motion of the lens with respect to the source.
However, planetary microlensing has the advantages that it can find planetary systems at
large distances (in the kpc regime) and that it is sensitive down to Earth mass planets that
lie close to the Einstein ring (which fortuitously coincides with distances of the order of
1 AU). Although this technique may only capture a handful of extra-solar planets in the near
future, its main power lies in its ability to acquire statistics on many events. Microlensing
surveys of the Galactic bulge have consequently been used to place constraints on the
abundance of Galactic planets based on the observed rate (or lack) of planetary microlensing
events. From 5 years of PLANET photometry of microlensing events, Gaudi et al. (2002)
concluded that less than 33% of M dwarfs in the Galactic bulge have companions with
mass Mp = 1MJ between 1.5 and 4AU, and that less than 45% have companions with mass
Mp = 3MJ between 1 and 7AU. More recently Snodgrass, Horne, & Tsapras (2004) found
that the Galactic abundance of ∼1MJ planets at ∼4 AU has an upper limit of 5n% based
on the sample of OGLE-II and OGLE-III microlensing events (where n is the number of
planetary microlensing events detected in this sample and n ≤ 2).
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2.4 Transit Photometry

Given a fortuitous geometric alignment, an extra-solar planet may be observed to eclipse
the host star as viewed from the Earth. Such an eclipse is called a planetary transit and it
is characterised by a small decrease in the observed brightness of the host star that repeats
at the orbital period of the extra-solar planet.

2.4.1 Transit Probability

Consider an extra-solar planet P of radius Rp orbiting a star S of radius R∗ in a circular
orbit of radius a. Let i be the orbital inclination of the planet (the angle between the line
of sight and the normal to the orbital plane). Figure 2.2 shows the configuration of S and
P when the disk of P just touches the disk of S at the “top” of its orbit as projected in the
sky plane. It is clear from Figure 2.2 that in order for a transit to occur, the disk of P must
obscure the disk of S to some extent. This condition may be written as:

x = a sin(90◦ − i) < R∗ + Rp (2.7)

Hence the probability Ptra of observing a transit is given by:

Ptra = P(a sin(90◦ − i) < R∗ + Rp)

= 1 − P

(

i ≤ cos−1

(

R∗ + Rp

a

))

(2.8)

Under the assumption that the orbital inclination of the extra-solar planet P is random, we
can apply Equation [6] in Appendix A to Equation 2.8, which yields:

Ptra =
R∗ + Rp

a
(2.9)

At this point it is useful to note the difference between a grazing eclipse and an annular
eclipse for an eclipsing body that is smaller than the host star. A grazing eclipse occurs
when the disk of the eclipsing body lies only partially in front of the disk of the host star at
all times during the eclipse. An annular eclipse occurs when the disk of the eclipsing body
lies fully infront of the disk of the host star at some point during the eclipse. Following
similar arguments to those used above, it may be shown that the probability of an annular
eclipse Pann of S by P is given by:

Pann =
R∗ − Rp

a
(2.10)

Since an eclipse is either annular or grazing we have:

Ptra = Pann + Pgra (2.11)

where Pgra is the probability of a grazing eclipse of S by P. Rearranging Equation 2.11 and
using Equations 2.9 and 2.10 yields:

Pgra =
2Rp

a
(2.12)
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Figure 2.2: Configuration of an extra-solar planet and the host star when the disk of the planet is observed
to touch the disk of the star at the “top” of its orbit as projected in the sky plane.

Figure 2.3: General configuration of an extra-solar planet and the host star at the start of the transit ingress.
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It is clear from Equation 2.9 that the closer a planet is to the host star, the more
likely it is to be observed to transit the stellar disk as seen from the Earth. In fact, for
a star of a particular radius, Ptra is maximised for a hot Jupiter. For example, consider
a typical hot Jupiter (a ≈ 0.05AU and Rp ≈ 1.4RJ - see Section 2.4.5) orbiting a Sun
like star (R∗ ≈ 1R⊙). Then we calculate Ptra ≈ 0.106. The strongest transit signal
occurs for an annular eclipse with Pann ≈ 0.080 for a hot Jupiter. However, an Earth
analogue has Ptra ≈ 4.70 × 10−3 and Pann ≈ 4.61 × 10−3, while a Jupiter analogue has
Ptra ≈ 9.86 × 10−4 and Pann ≈ 8.03 × 10−4. The conclusion drawn from this discussion is
that the transit technique favours the detection of hot Jupiters over other types of planets
from a purely probabilistic point of view. If a Sun-like star hosts a hot Jupiter, then it has
a ∼10% chance of exhibiting a periodic transit signal although this does not imply that we
will be able to detect such a signal.

The assumption that an extra-solar planet resides in a circular orbit (e ≤ 0.1) is not valid
for most known extra-solar planets (see Table 1.1). However, the hot Jupiters considered in
Section 1.2.3 all have e ≤ 0.15 (approximately circular orbits) which is to be expected since
this type of planet is likely to have undergone orbital circularisation via tidal interaction
with the host star. Hence, the circular orbit assumption is valid for this class of extra-solar
planets, as it is for the Earth (e = 0.017) and Jupiter (e = 0.048). Motivation for the
derivations above based on this assumption lies in the fact that hot Jupiters are the focus
of this thesis and more detailed calculations involving eccentric orbits are not required.

2.4.2 Transit Duration

In order to derive an expression for the duration ∆t of a transit event, we consider the same
set up as in Section 2.4.1. The duration of a transit event is defined as the time elapsed
from when the disk of P first touches the disk of S (the start of the transit ingress) to when
the disk of P last touches the disk of S (the end of the transit egress), all as projected in the
sky plane. Figure 2.3 shows the general configuration of S and P at the start of the transit
ingress. The line NN′ is the line of nodes (see Figure C.1). From the geometry presented
in Figure 2.3, we may write the following equation (Pythagoras’s Theorem):

a2 sin2 θ + a2 cos2 θ sin2(90 − i) = (R∗ + Rp)2

∴ sin2 θ + cos2 θ cos2 i =

(

R∗ + Rp

a

)2

(2.13)

∴ sin2 θ sin2 i + cos2 i =

(

R∗ + Rp

a

)2

∴ θ = sin−1





(

1

sin i

)

√

(

R∗ + Rp

a

)2

− cos2 i



 (2.14)

The extra-solar planet P has a constant angular speed ω in its orbit given by:

ω =
2π

P
(2.15)
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where P is the orbital period. During the duration ∆t of the transit event, P moves an
angle of 2θ around its orbit at constant angular speed ω. Hence we also have:

ω =
2θ

∆t
(2.16)

Substituting Equation 2.16 into Equation 2.15 and rearranging gives:

∆t =
Pθ

π
(2.17)

Substituting Equation 2.14 into Equation 2.17 yields the following analytic expression for
the transit duration ∆t:

∆t =
P

π
sin−1





(

1

sin i

)

√

(

R∗ + Rp

a

)2

− cos2 i



 (2.18)

For all known extra-solar planets (except maybe the very hot Jupiters) we have R∗+Rp ≪ a
and hence θ is small. In this case we have sin θ ≈ θ and cos θ ≈ 1. Using this result
in Equation 2.13, rearranging and then using Equation 2.17 leads to the better known
expression for ∆t:

∆t =
P

π

√

(

R∗ + Rp

a

)2

− cos2 i (2.19)

A central transit occurs when i = 90.0◦. In this case we have a transit duration ∆tcen given
by:

∆tcen =
P

π
sin−1

(

R∗ + Rp

a

)

≈ P (R∗ + Rp)

πa
(2.20)

where the approximation is valid for R∗ + Rp ≪ a.

Let us consider our examples from Section 2.4.1 again. We may calculate P from
Equation 1.8 using the assumed value for a and noting that M ≈ 1M⊙. Then, using
Equation 2.20, we calculate that ∆tcen ≈ 3.33 hours for the hot Jupiter, ∆tcen ≈ 13.1
hours for the Earth and ∆tcen ≈ 32.6 hours for Jupiter. A typical night of photometric
observations lasts ∼8 hours from the ground. Consequently, the hot Jupiter transit signal
can fit into a single night of observations whereas an Earth or Jupiter transit signal will only
be detectable by comparing different nights of observations, making them more difficult to
find, especially if the atmospheric conditions change considerably from one night to the
next.

2.4.3 Transit Lightcurve Morphology

The transit of an extra-solar planet across the disk of the host star as viewed from the Earth
temporarily obscures a fraction of the luminous stellar disk. Since we cannot resolve the
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stellar disk from the Earth (the star is well modelled by a point source of light), we simply
observe a small temporary decrease in the brightness of the host star during a transit event.
In order to calculate the predicted lightcurve of an extra-solar planetary transit event, we
have adopted the following model.

A luminous and spherical primary star was assumed with an orbiting dark companion
(planets have no intrinsic optical emission and reflect very little light - see Section 2.2).
The surface brightness of the observed disk of the star was assumed to obey a linear limb
darkening law:

I(µ) = I(1)(1 − u(1 − µ)) (2.21)

where µ is the cosine of the angle between the normal to the stellar surface and the line
of sight, I(1) is the surface brightness at the centre of the stellar disk, I(µ) is the surface
brightness of the stellar disk as a function of µ and u is the linear limb darkening coefficient
(0 ≤ u ≤ 1). The companion was assumed to be spherical and massless (the most massive
extra-solar planets have Mp ∼ 10MJ ≈ 9.5 × 10−3M⊙). The orbit of the companion was
assumed to be circular (true for hot Jupiters and most planets in our Solar System) with
the star fixed at the centre of the orbit. The observed stellar flux f(t) at time t is then
given by:

f(t) = f0(1 − fc(t)) (2.22)

where f0 is the total stellar flux when the star is unobscured and fc(t) is the fraction of the
total stellar flux obscured by the companion at time t.

We have developed a function called transitcurve.pro in the programming language IDL
that calculates the function f(t)/f0 in a numerical fashion. It works by making a grid for
the orbital phase t/P over the range −0.5 ≤ t/P ≤ 0.5, where P is the orbital period.
We define t/P = 0 when the companion is at its closest to the observer. For each orbital
phase t/P , transitcurve.pro creates a grid for the observed stellar disk and calculates the
flux from each grid element taking into account the apparent position of the companion
and the effects of linear limb darkening. The sum of the fluxes from all the grid elements
yields the value of f(t) at phase t/P which is then normalised by f0.

The function transitcurve.pro requires the arguments Rp/R∗, a/R∗, i (degrees) and u
in order to define the physical situation. It also requires integer values for the stellar grid
resolution G and the lightcurve phase resolution L. The function transitcurve.pro creates a
grid for the stellar disk of radius G grid elements inside a square of side 2G grid elements,
and it returns a lightcurve with L data points. Each lightcurve data point contains the
value of the time t in units of the orbital period (orbital phase) and the corresponding
value of f(t)/f0. We have made two adjustments to improve the speed of transitcurve.pro.
Firstly we note that the transit curve is symmetric about the phase t/P = 0, and so we
only carry out the stellar grid calculations for the orbital phase range −0.5 ≤ t/P ≤ 0.0.
Secondly, we limit the stellar grid calculations to a square around the companion at each
orbital phase t/P and calculate by summation the total obscured stellar flux instead of the
total observed stellar flux.

Let us define the depth ∆f/f0 of a transit event by:

∆f

f0
= max

t
(fc(t)) (2.23)
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Figure 2.4: Transit lightcurves for a typical hot Jupiter (continuous line), the Earth (dashed line) and
Jupiter (shorter dashed line) orbiting the Sun (M∗ = 1M⊙ and R∗ = 1R⊙) with i = 90.0◦ and u = 0.5.

Figure 2.4 shows the theoretical transit lightcurves calculated by transitcurve.pro for a
typical hot Jupiter (as defined in Section 2.4.1 and represented by a continuous line), the
Earth (dashed line) and Jupiter (shorter dashed line) orbiting the Sun (M∗ = 1M⊙ and
R∗ = 1R⊙) with i = 90.0◦ and u = 0.5. It can be seen that the hot Jupiter causes
the deepest transit depth (∆f/f0 ≈ 2.5%) and that Jupiter causes a transit depth of
∆f/f0 ≈ 1.3% while the Earth causes a minute transit depth of ∆f/f0 ≈ 0.01%. Figure
2.5(a) shows the effect of varying orbital inclination on the transit lightcurve for the hot
Jupiter orbiting the Sun (with u = 0.5). The continuous, dashed, shorter dashed and
dotted lightcurves correspond to inclinations of 90.0◦, 88.0◦, 86.0◦ and 84.0◦ respectively.
One can see that as the inclination of the orbit of an extra-solar planet decreases from 90.0◦,
the transit depth and duration decrease until, at a certain inclination, there is no eclipse.
Figure 2.5(b) shows the effect of varying values for the linear limb darkening coefficient on
the transit lightcurve for the hot Jupiter orbiting the Sun (with i = 90.0◦). The dotted,
shorter dashed, continuous and dashed lightcurves correspond to values of the linear limb
darkening coefficient given by 0.0, 0.25, 0.5 and 1.0 respectively. One can see that when
there is no limb darkening (u = 0.0), the transit profile is flat bottomed. As u increases
from zero to its maximum value of u = 1.0, the transit curve becomes smoother and deeper.
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Note that the increase in ∆f/f0 with increasing u is only true for orbital inclinations close
to 90.0◦.

If we ignore the effects of limb darkening, then we can estimate the transit depth ∆f/f0

during an annular eclipse as follows. With no limb darkening (u = 0), the stellar disk
(radius R∗) has a uniform surface brightness I (from Equation 2.21). The total stellar flux
f0 is then given by:

f0 = IπR2
∗ (2.24)

During an annular eclipse by a planet with radius Rp, an area πR2
p of the stellar surface is

obscured, which corresponds to a flux ∆f given by:

∆f = IπR2
p (2.25)

Dividing Equation 2.25 by Equation 2.24 yields:

∆f

f0
=

(

Rp

R∗

)2

(2.26)

Equation 2.26 yields ∆f/f0 ≈ 0.0206 for the hot Jupiter, ∆f/f0 ≈ 8.4×10−5 for the Earth
and ∆f/f0 ≈ 0.0105 for Jupiter, in rough agreement with Figure 2.4. It is clear from
Equation 2.26 that the transit depth ∆f/f0, and therefore the strength of transit signal, is
heavily dependent on the relative sizes of the star and extra-solar planet. The transit depth
is maximised for large planets (Jupiter size) orbiting small stars (M dwarfs for example).

Regular photometric observations (many per transit duration) of the host star of suf-
ficient accuracy (better than the transit depth) are required in order to define a transit
lightcurve. Fitting the model described above (and encapsulated in Equation 2.22) to the
data in flux units allows one to determine the orbital period P (from observations of mul-
tiple transits), the time of mid-transit t0, the “out of transit” magnitude of the star m0

(where m0 = −2.5 log(f0)), the planet to star radius ratio Rp/R∗ and the impact parameter
b (where b = a cos i/R∗). The values of M∗ and R∗ may be estimated from the spectral
type and/or broad-band colours of the star under observation. With this information, one
can calculate the value of a from Kepler’s third law (Equation 1.8), and fit a value for the
orbital inclination i instead of the impact parameter b.

2.4.4 Transit Signal To Noise

In the previous section we derived an approximation for the transit depth ∆f/f0 of a
transiting extra-solar planet. We will now derive an expression for the transit signal to
noise S/N based on some simple assumptions and then use this to determine what sort of
transits we may be able to detect from ground based observations.

Consider a box-car transit lightcurve with depth ∆f/f0 that has Nin photometric ob-
servations during transit and Nout photometric observations out of transit. Let each pho-
tometric observation have an uncertainty σf0 (see Figure 2.6). The signal S of the transit
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(a) Transit lightcurves for a typical hot Jupiter orbiting the Sun for different values of i
with u = 0.5. The continuous, dashed, shorter dashed and dotted lightcurves correspond to
inclinations of 90.0◦, 88.0◦, 86.0◦ and 84.0◦ respectively.
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(b) Transit lightcurves for a typical hot Jupiter orbiting the Sun for different values of u
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to values of the linear limb darkening coefficient given by 0.0, 0.25, 0.5 and 1.0 respectively.

Figure 2.5: Transit lightcurve morphology as a function of inclination and the linear limb darkening coeffi-
cient.
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curve is defined by:

S = f0 − min
t

(f(t)) (2.27)

= f0 − fin (2.28)

where fin is the constant observed stellar flux during transit (since the transit curve is a
box-car). Substituting Equation 2.22 into Equation 2.27 we get:

S = f0 − f0(1 − max
t

(fc(t))

= ∆f (2.29)

By considering Equation 2.28, the uncertainty in S, denoted by σS, may be written as:

σ2
S = σ2

f0
+ σ2

fin
(2.30)

where σf0
is the uncertainty in f0 and σfin

is the uncertainty in fin. The values of f0 and fin
may be estimated from the photometric data by calculating the mean of the photometric
data out of transit and the mean of the photometric data during transit respectively. Hence
the uncertainties in f0 and fin are given by:

σ2
f0

=
σ2f2

0

Nout
(2.31)

σ2
fin

=
σ2f2

0

Nin
(2.32)

Substitute Equations 2.31 and 2.32 into Equation 2.30:

σ2
S =

σ2f2
0

Nout
+

σ2f2
0

Nin
(2.33)

The signal to noise S/N of the transit curve is given by:

S/N =
S

σS
(2.34)

Substitute Equations 2.29 and 2.33 into Equation 2.34:

S/N =
∆f

σf0

√

NoutNin
Nout + Nin

(2.35)

This expression for the signal to noise shows that it is important to obtain sufficient
photometric observations not just during the transit event but also out of transit. To
illustrate this point, consider Equation 2.35 in the limit Nin ≫ Nout. Then S/N ∝ √

Nout,
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Figure 2.6: Typical photometric observations of a transit event modelled by a box-car transit lightcurve

and the number of observations out of transit Nout limits the S/N achieved. Similarly,
in the limit Nout ≫ Nin, we have S/N ∝

√

Nin, and the number of observations during
transit Nin limits the S/N achieved. In general it is easier to have Nout ≫ Nin due to the
fact that a transit event lasts a small fraction of the orbital period, and most observations
will therefore be out of transit.

A firm detection of a transit candidate requires at least a 4σ confidence (or equivalently
a S/N ≥ 4). However, a 6σ detection threshold is generally required in order to limit the
number of false alarms. The best photometry from the ground currently achieves an accu-
racy of ∼ 0.2 − 0.3%, and regularly achieves an accuracy of ∼ 1% for the brighter stars in
the star sample. The accuracy is limited by photon noise (mainly from the sky background)
and complicated by varying extinction, seeing etc. Let us assume that photometric obser-
vations with an uncertainty of σ ≈ 1.0% can be made of a transiting extra-solar planetary
system every 5 minutes during a typical observing run that lasts 10 nights with 8 hours of
observations per night (960 lightcurve data points). Lets also assume that a central transit
is observed in the middle of night four (arbitrary). Considering the examples from Section
2.4.1 again, we have for the hot Jupiter P ≈ 4.08 days and ∆f/f0 ≈ 0.0206 ignoring the
effects of limb darkening. Hence 2 transits will be observed, and since ∆tcen ≈ 3.33 hours,
we have Nin ≈ 80 and Nout ≈ 880. Equation 2.35 then yields a S/N of 17.6, well above the
detection threshold. For the Earth, we have P = 1 year and ∆f/f0 ≈ 8.4 × 10−5. Hence 1
transit is observed of duration ∆tcen ≈ 13.1 hours. However, only 8 hours during the tran-
sit are observed and consequently we have Nin ≈ 96 and Nout ≈ 864. The S/N achieved is
0.078, clearly a non-detection. Finally, for Jupiter, 8 hours of 1 transit are observed with
∆f/f0 ≈ 0.0105. Therefore Nin ≈ 96 and Nout ≈ 864 and the S/N achieved is 9.76, more
than sufficient for a detection.
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It is also interesting to calculate the transit depth ∆f/f0 corresponding to the detec-
tion threshold of S/N = 4 given the best current photometric observations (σ ≈ 0.2%) with
Nin ≈ 80 and Nout ≈ 880 (based on the typical hot Jupiter). The transit depth corre-
sponding to a S/N of 4 is then ∆f/f0 ≈ 9.34×10−4, which, for a Sun like star (R∗ ≈ 1R⊙),
corresponds to a planetary radius of Rp ≈ 0.30RJ. This is a good estimate of the current
limit from the ground to the size of an extra-solar planet detectable by the transit tech-
nique, although theoretically it may be improved by higher cadence observations and by
observing smaller stars.

2.4.5 The History Of The Transit Technique

Five years after the discovery of 51 Peg b, the extra-solar planet in orbit around HD 209458
was found to transit the stellar disk (Charbonneau et al. 2000). This hot Jupiter was already
known to have Mp sin i = 0.69 ± 0.05MJ from the RV measurements (Mazeh et al. 2000).
Also, the spectral type, and hence the mass and radius, of the host star were already known.
Consequently, the modelling of the two observed transit events allowed the measurement of
the orbital inclination, which in turn allowed the true mass of HD 209458b to be calculated.
Charbonneau et al. (2000) measured i = 87.◦1 ± 0.◦2 implying that Mp = 0.69 ± 0.05MJ.
They also measured Rp = 1.27 ± 0.02RJ from the transit fit.

The importance of this result lies in the fact that for the first time the mass and radius
of an extra-solar planet had been measured, not just a lower limit on the mass. Before
this discovery, the radii of the extra-solar planets were unknown and hence their average
densities were also unknown. The average density derived for HD 209458b was ∼0.38g/cm3,
significantly less than the average density of Saturn (0.7g/cm3), the least dense of the Solar
System gas giants. This was proof that HD 209458 must be a gas giant rather than a rocky
(terrestrial) planet, lending weight to the term hot Jupiter. Average density was not the
only important quantity that could be calculated for an extra-solar planet for the first time.
Other such quantities included surface gravity and effective temperature.

Other groups soon followed in observing the transits of HD 209458, the most notable
being Hubble Space Telescope (HST) observations (Brown et al. 2001) which provided
exquisite detail on the morphology of the transit lightcurve with a photometric precision of
∼0.11mmag. Brown et al. (2001) were able to estimate the linear limb darkening coefficient
of the host star and even put limits on the sizes and masses of any circumplanetary rings or
satellites. They inferred a planetary radius of ∼ 1.35RJ, similar to the value of ∼ 1.40RJ
previously reported by Mazeh et al. (2000). The uncertainty in the mass and radius of the
host star is the main source of uncertainty in the derived planetary radius for the above
estimates. Cody & Sasselov (2002) used detailed modelling of the host star to derive their
estimate for the planetary radius of ∼ 1.42 ± 0.13RJ. We adopt the value Rp ≈ 1.4RJ for
the radius of a typical hot Jupiter (see Section 2.4.1).

Since the discovery of the transiting nature of HD 209458 b, many transit candidates
have been put forward by various groups. OGLE have been by far the most prolific tran-
sit survey with over 100 transit candidates from two observational seasons (Udalski et al.
2002a; Udalski et al. 2002b; Udalski et al. 2003). EXPLORE have produced a handful of
transit candidates that are currently being followed up spectroscopically (Mallén-Ornelas
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et al. 2003) and a search of the MACHO photometry database has revealed nine transit
candidates (Drake & Cook 2004). However, only three transit candidates have been con-
firmed as extra-solar planets: OGLE-TR-56b (Konacki et al. 2003b), OGLE-TR-113b and
OGLE-TR-132b (Bouchy et al. 2004).

A very interesting result, and one that is relevant to this thesis, is that Gilliland et al.
(2000) found a lack of planets in the globular cluster 47 Tuc from HST observations. More
specifically they observed ∼34000 main sequence stars in the cluster over 8.3 days. As-
suming a typical hot Jupiter with Rp = 1.30RJ, P = 3.5 days and Ptra = 0.10, and a
hot Jupiter fraction of 1.0% (same as the Solar neighbourhood), Gilliland et al. (2000) ex-
pected to have detected ∼17 transiting hot Jupiters. They actually found no transit signals
that could be the result of transiting planets using their two-colour time-series photometry
(see Section 2.4.6) and hence they could conclude with a very high confidence that the hot
Jupiter fraction for 47 Tuc is at least an order of magnitude lower than that for the Solar
neighbourhood. The cause of the absence of hot Jupiters in 47 Tuc is not known, but it
was suggested that low metallicity and/or crowding in the cluster interfered with planet
formation, orbital migration or planet survival.

2.4.6 Transit Mimics And Follow-Up Strategies

Once a transit signal has been detected, it needs to be confirmed as an extra-solar planet
via the analysis of appropriate follow-up observations. However there are many scenarios
which may result in a similar lightcurve to that of a real transiting planet and any follow-
up observations need to be designed carefully in order to rule out these transit “mimics” if
possible. Below we describe the possible sources of confusion and what type of follow-up
observations may be used to determine the correct scenario.

The first type of transit mimic may come from stellar activity in the form of star spots.
Star spots are transient regions of cooler gas in the stellar surface and hence they appear
darker than the surrounding surface regions. The formation of a large star spot on the
stellar surface may cause a sufficient lowering in apparent brightness of the star as to be
detectable, and this dip in apparent brightness will appear to come and go as the star
rotates. However, a star spot is not a permanent feature and it will evolve over time
eventually to disappear, resulting in the disappearance of the transit mimic. Although new
star spots may appear, they will most likely appear at different phases and stellar latitudes,
resulting in transit mimics that come and go in a random fashion. The simplest way to
identify such a transit mimic is to see if the transit signal disappears, changes in period,
depth and/or duration over time. A good rule of thumb is that if the transit signal occurs
at least 3 times with the same morphology, then it is unlikely to be due to star spots.

The next source of confusion comes from eclipsing binaries of various types. A typical
detached eclipsing binary exhibits eclipses at a period of half of the true orbital period. A
primary eclipse occurs when the cooler star (lower surface brightness) eclipses the hotter
star (higher surface brightness) and a secondary eclipse occurs when the hotter star eclipses
the cooler star. Since the stellar surface area obscured during a primary eclipse is the same
as the area obscured during a secondary eclipse, the primary eclipse is the deeper of the
two eclipses. For two main sequence stars, the hotter star is usually also the larger star.
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When the secondary object is a planet there is no secondary eclipse since the planet is a
non-luminous object. Hence, the presence of eclipses of different depths in a lightcurve is a
sure sign of an eclipsing stellar binary and photometric observations must cover the phases
at half of the primary eclipse period in order to test this scenario.

This leads naturally into the case when the secondary eclipse is too shallow to be
detected in the photometric data. This may occur when the amount of light eclipsed from
the secondary star is much less than the amount of light eclipsed from the primary star
(due to a combination of different sizes and surface brightnesses). Examples of such systems
include a late M dwarf orbiting an F star or a Sun like star orbiting a giant star. There
are various ways to detect these transit mimics. A moderate resolution spectrum of the
entire visible wavelength range may be used to obtain the spectral type of the primary star,
providing an estimate of its size. If the primary star is found to be too big (a giant for
instance), then the companion may be too big to be a planet (Rp ≥ 2RJ) based on the
value of Rp/R∗ determined from the transit fit to the lightcurve. Dreizler et al. (2002) used
this method to rule out the planetary status of a subset of the OGLE transit candidates.

If the radius of the host star is known, then one can determine the radius of the com-
panion from the transit lightcurve. However, a companion with a radius similar to that
of a hot Jupiter is not necessarily a planet. Hot Jupiters, brown dwarfs and late M dwarf
stars all have similar radii but very different masses (Perryman 2000). Therefore the best
way to distinguish between these types of companions is to go directly to RV follow-up
measurements. The drawback is that RV follow-up of transit candidates generally requires
long exposure times on large telescopes in order to detect the radial velocity variations.
A useful equation for the integration time per RV measurement tobs in minutes required
to achieve a precision of a quarter of the amplitude of the RV oscillations is supplied by
Charbonneau (2003):

tobs = 0.0363

(

Mp

MJ

)−2(M∗

M⊙

)4/3( P

3.0 days

)2/3

100.4(V −8) min (2.36)

where V is the V band magnitude of the host star. This equation applies to the 10-m Keck
telescope with the HIRES spectrograph. It is obvious from Equation 2.36 that the required
integration time is very sensitive to planetary mass and stellar brightness. For example,
a 1.0MJ planet in a 3.0 day orbit around a Solar mass star with V = 10.0, V = 14.0
or V = 18.0 requires an exposure time per measurement of ∼0.23 min, ∼9.1 min or ∼6
h respectively whereas a 0.5MJ planet in a 3.0 day orbit around a Solar mass star with
V = 10.0, V = 14.0 and V = 18.0 requires an exposure time per measurement of ∼0.92
min, ∼36 min or ∼25 h. Clearly, radial velocity measurements can require a lot of telescope
resources and accurate determination of the planetary mass may not even be possible for
the fainter targets. With many transit candidates, the situation becomes unmanageable.
It is therefore necessary to use other methods that are less resource intensive in order to
rule out the transiting planet scenario for as many transit candidates as possible before
resorting to RV follow-up.

Multi-colour photometry of the eclipse event will reveal if the eclipse has a waveband
dependent eclipse depth. A planetary transit event is achromatic since the planet is non-
luminous (although limb darkening effects may produce a very small colour change during
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the transit). However, a stellar binary eclipse is a chromatic event for any two stars with
different colours. Hence, any detection of a waveband dependent eclipse depth indicates
that the system is a stellar binary.

The presence of ellipsoidal variations or heating effects in the out of transit regions of the
lightcurve indicate that the companion is massive or luminous respectively (Drake 2003).
Ellipsoidal variations are due to the host star being tidally distorted into an ellipsoidal shape
by the companion and rotationally synchronised. A planetary companion is not massive
enough to distort the shape of the star. The heating effect is due to heating on one side
of the companion caused by irradiation by the host star. Again, a planet does not emit
enough radiation to be detectable in the lightcurve. Therefore the presence of these specific
variations in the observed lightcurve indicates that the companion is stellar.

If the secondary eclipse is of very similar depth (and shape) to the primary eclipse,
which is generally the case for a grazing eclipsing stellar binary in which the two stars
are very similar, then the differences between the primary and secondary eclipses may be
undetectable in the photometric data. As a result, all of the eclipses may be mistaken as
primary with a non-visible secondary eclipse. Neither spectral typing nor multi-waveband
time-series photometry will help in this situation. However, the eclipses of such a stellar
binary tend to be V shaped compared to the relatively flat bottomed annular eclipses.
Careful modelling of the photometric data may therefore allow the transiting planet scenario
to be ruled out.

Perhaps the most insiduous transit mimic is that of a blend of a stellar binary with the
light from a third star, not necessarily physically associated with the stellar binary itself.
The eclipse depth of the stellar binary is diluted down by the light of the third star, leading
to an underestimate of Rp/R∗ when the lightcurve is fitted with the transiting planet model.
There are a number of ways of testing this scenario including the use of adaptive optics to
look for close neighbouring stars and careful analysis of the spectral line bisectors to look
for small asymmetries in the spectral lines indicative of the presence of light from another
star (Konacki et al. 2003a; Torres et al. 2004).

2.4.7 Conclusions

The probability of observing a planetary transit for a given star hosting an extra-solar
planet is maximised for the class of planets known as hot Jupiters (Ptra ≈10%). The
transit depth is also maximised for hot Jupiters. Combining this with the fact that hot
Jupiters have orbital periods of the order of a few days and transit durations that fit within
a single night of observations makes a transit survey most sensitive to this type of planet.
Assuming that ∼1% of main sequence stars harbour a hot Jupiter (Butler et al. 2000),
then a transit survey has the capacity to reveal ∼1 transiting hot Jupiter for every 1000
main sequence stars observed.

CCD imaging provides the means to photometrically monitor many stars at once. By
carefully choosing the field to be observed and by using an instrument with a large field of
view for the telescope (a CCD mosaic imager for example), one may observe thousands of
stars at once. Photometric observations need to be of high cadence (≥ 8 data points per
hour) and high accuracy (∼<1% accuracy per data point) in order to maximise the signal
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to noise achieved. This is also important for defining the shape of any observed eclipses.
Ideally more than 1 transit needs to be observed for a firm detection of a transit signal
which in turn requires observing runs of ∼10−20 nights for the detection of hot Jupiters in
any particular field.

A transit survey will detect many transit candidates, the majority of which will be tran-
sit mimics involving eclipsing binary stars. Careful analysis of the lightcurves and simple
follow-up observations will identify most of the mimics allowing the more time consuming
radial velocity measurements to confirm or refute the planetary status of the (hopefully)
few remaining transit candidates.

2.5 Summary

In this chapter we have given an overview of three of the most important techniques cur-
rently used to detect extra-solar planets: radial velocity, direct imaging/reflected light and
gravitational microlensing. We have described the type of signal being looked for, how it
is detected and what success the technique has had and/or is expected to have in the near
future.

The transit technique has been reviewed with special attention since it is central to this
thesis. We have considered in detail the theoretical aspects of a transit event and presented
a program (transitcurve.pro) that we have developed in order to calculate theoretical transit
lightcurves. We have also described the history of the technique and the difficulties that
are faced in proving the planetary nature of any one transit candidate. We have noted that
transit surveys favour the detection of hot Jupiter type planets and we have described what
is required of a transit survey in order to find these planets.



3
A Transit Survey Of The Field Of Open

Cluster NGC 7789

The University of St Andrews Planet Search (UStAPS) started to monitor open clusters in
the search for planetary transits in 1999. Time series photometric data in a single waveband
has been obtained on a total of three open clusters (NGC 6819, NGC 6940 and NGC 7789)
during three observing runs. The first two observing runs (in 1999) were used to observe all
three clusters in rotation, whereas the third run (in 2000) was used to observe NGC 7789
alone. This thesis deals with the NGC 7789 data from all three runs.

For details of the data reduction and results on NGC 6819 see Street et al. (2002) and
Street et al. (2003). To summarise, Street et al. (2003) found 11 transit candidates but
ruled out the planetary status of all of them except for one of the single-transit candidates.
It was stated that they expected to detect ∼11 transiting hot Jupiters in the data if hot
Jupiters are as common in this field as in the Solar neigbourhood, possibly indicating a lack
of hot Jupiter type planets. Follow-up observations are yet to be carried out on any of the
transit candidates. Street et al. (2002) report on the many new variable stars discovered
by the survey. The data on NGC 6940 is still under analysis and will be published in the
near future.

3.1 Introduction

The study of open clusters for transiting planets has a number of advantages over fields in
other parts of the sky or Galactic plane. While providing a relatively large concentration of
stars on the sky (but not so large as to cause blending problems as in the case of globular
clusters observed from the ground), they also provide a set of common stellar parameters
for the cluster members. These are metallicity, age, stellar crowding and radiation density.
Also, the fainter cluster members are smaller stars and therefore they are likely to show
deeper transit signatures, helping to offset sky noise contributions. The identification of
the cluster main sequence in the colour magnitude diagram allows the assignment of a
model-dependent mass and radius to each photometric cluster member, and assuming a
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Table 3.1: Properties of the open cluster NGC 7789. Data taken from http://obswww.unige.ch/webda by
Mermilliod, J.C. and the SIMBAD database.

RA (J2000.0) 23h 57m

Dec (J2000.0) +56◦ 43′

l 115.◦48
b −5.◦37

Distance (pc) 2337
Radius ∼16′

Age (Gyr) 1.7
[Fe/H] −0.08

E(B − V ) 0.217

law relating extinction to distance for the field allows the assignment of a model-dependent
mass, radius and distance to all stars in the field under the assumption that they are main
sequence stars. Transit candidates with well defined phased lightcurves may therefore be
analysed in detail as to whether they are consistent with a transiting planet model. An
estimate of the fraction of stars hosting a hot Jupiter (referred to as the hot Jupiter fraction)
may be obtained by comparing the number of hot Jupiters that are actually detected to
how many one would expect to detect using the knowledge of the star properties and
the lightcurves themselves. The dependence of the hot Jupiter fraction on the cluster
parameters may then be investigated by extending the experiment to other open clusters.

The observations of open cluster NGC 7789 and the data reduction process is the subject
of this chapter. The main parameters of the cluster are shown in Table 3.1. For a good
review of previous relevant work on this cluster see Gim et al. (1998).

3.2 Observations

We observed the open cluster NGC 7789 using the 2.5m Isaac Newton Telescope (INT)
of the Observatorio del Roque de los Muchachos, La Palma, in the Canary Islands during
three bright runs with dates 1999 June 22-30, 1999 July 22-31 and 2000 September 10-20.
For brevity, these runs shall be refered to from now on as 1999-06, 1999-07 and 2000-09
respectively. We used the Wide Field Camera (WFC) which consists of a 4 EEV CCD
mosaic where each CCD is 2048x4096 pixels (Walton et al. 2001). The pixel scale is
0.33′′/pix and field of view ∼0.5◦x 0.5◦. The gain and readout noise values for each chip were
calculated automatically during the preprocessing stage of the data reduction (see Section

3.3.1). The mosaic field was centred on NGC 7789 at α = 23h57m30s and δ = +56◦43′41′′.

The usual procedure for each night was to obtain ∼5 bias frames and ∼8 sky flat frames
at both the beginning and end of the night. Observations on NGC 7789 in the runs 1999-
06 and 1999-07 consisted of ∼6 pairs of 300s exposures taken every ∼50 minutes during
the later part of each night. Observations in the 2000-09 run consisted of sequences of
ten consecutive 300s exposures followed by a bias frame, repeated continuously through-
out the whole of each night. With a readout time of 100s and various losses due to bad
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weather/seeing and telescope jumps, this resulted in a total of 880×300 s exposures in Sloan
r′ over the three runs, with 691 of these exposures from the 2000-09 run alone. During the
2000-09 run, we also took 5 images of NGC 7789 with varying exposure times in Sloan i′,
along with 5 sky flat frames, in order to provide us with the necessary colour information.

3.3 CCD Reductions

3.3.1 Preprocessing: CCD Calibrations

Each run and each chip was treated independently for the purpose of the reductions. The
reduction process was carried out by a single C-shell/IRAF script that runs according to
a user-defined parameter file. Bad pixels were flagged in a user-defined detector bad pixel
mask, and ignored where relevant. The script carries out the following steps:

1. Calculates the Heliocentric Julian Date (HJD) at mid exposure for each science frame.

2. Sorts the FITS files by observation type (bias, flat or science frame).

3. Sorts the flat frames and science frames by the filter used.

4. Deducts a 3σ-clipped mean of the overscan region from each bias frame and then
combines all the bias frames via a 3σ-clipped mean to create a masterbias frame.
The readout noise of the chip is determined from a 3σ-clipped mean of the standard
deviation image produced alongside the masterbias frame. The masterbias frame is
then trimmed.

5. For each filter the following procedure is carried out on all flat frames. The script
deducts a 3σ-clipped mean of the overscan region from the flat frame, trims the frame,
deducts the masterbias frame and calculates a 3σ-clipped mean of a 200 × 200 pixel
square in the centre of the frame. The flat frames are then scaled to the same ex-
posure level (using this mean value of the central 200 × 200 pixels) so that they
can be combined using the median pixel value. The resulting combined frame is
a first approximation to the normalised master flat frame. Each original bias cor-
rected flat frame is then divided by this initial normalised flat frame and a plane
Π(x, y) = A + Bx + Cy is fitted to the resulting image. The plane Π(x, y) is
now divided back into the original bias corrected flat frame in order to remove any
non-uniform lighting effects (to first order) over the wide field and in order to nor-
malise the frame. The corrected and normalised flat frames are then combined by the
median pixel value to produce the normalised master flat frame MF (x, y) ∼ 1.

6. The gain is determined as follows from the flat frames for the Sloan r′ filter. For a
bias corrected flat frame F (x, y) and the corresponding plane Π(x, y) fitted in step 5,
a model flat frame F (x, y) is constructed such that F (x, y) = Π(x, y) MF (x, y). The
script then constructs the difference frame D(x, y) from D(x, y) = F (x, y) − F (x, y).
Five 100× 100 pixel square regions along one of the diagonals of the difference frame
are used to calculate values for the variance in F (x, y) which are paired up with
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Table 3.2: Readout noise (ADU) and gain (e−/ADU) values for each chip.

Chip No. Readout Noise (ADU) Gain (e−/ADU)

1 3.02 1.44
2 3.10 1.46
3 2.99 1.24
4 3.28 1.45

the 3σ-clipped means of the corresponding regions in the flat frame F (x, y). After
repeating this for all the flat frames, a plot of variance versus signal is made including
the value of the read out noise squared for a signal of zero. A straight line is fitted
to the data, optimally weighted using the formal uncertainty in the variance, by the
method of χ2 minimisation, the gradient being the inverse of the chip gain (e−/ADU).

7. For each filter the following procedure is carried out on all science frames. Saturated
pixels are flagged in each science frame and added to the detector bad pixel mask
to create a tailor made bad pixel mask for that frame. The script then deducts a
3 σ - clipped mean of the overscan region from the science frame, trims the frame,
deducts the masterbias frame and divides the frame by the appropriate normalised
master flat frame.

Table 3.2 shows the values of the readout noise and gain for each chip as calculated by
the reduction script, and Figure 3.1 shows the data used to calculate the gain for each chip.
Figure 3.2 shows a plot of some of the diagnostic data output by the reduction script for
Chip 4.

3.3.2 Photometry: Difference Image Analysis

Differential photometry on the reduced science frames in the Sloan r′ filter was accomplished
using the method of difference image analysis (Alard & Lupton 1998; Alard 2000). Our
implementation of this procedure was adapted from the code written for the MOA project
(Bond et al. 2001), and it consists of three automated scripts. Bad pixels are ignored in
the operations that the scripts perform.

1. The first script constructs a reference frame from selected frames with good seeing, and
a star list from the reference frame. First, stars are detected and matched between the
best seeing frames in order to derive a set of linear transformations and geometrically
align the frames. The frames are then combined into a mean reference frame using the
exposure times of the individual images as weights. The reference frame is analysed
using IRAF’s DAOPhot package (Stetson 1987). The package identifies stars on
the reference frame and chooses a set of 175 point spread function (PSF) stars. A
“penny2” PSF function that varies quadratically with position, along with a lookup
table of residuals, is solved for. The neighbours of the PSF stars are then subtracted
using this solution, and a new PSF function is solved for. This new solution is used
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Figure 3.1: A plot of variance versus signal for each chip. The dashed line is the fit.
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to measure the instrumental fluxes and positions of all stars on the reference frame.
The result is a reference frame with a corresponding star list. We used 13 consecutive
best seeing images (∼1′′) to construct the reference frame.

2. The reference frame is used to produce a set of difference images. The main idea be-
hind difference image analysis is that an image frame I(x, y) is related to the reference
frame R(x, y) via the following equation:

I(x, y) = R ⊗ K(x, y) + B(x, y) (3.1)

where

R ⊗ K(x, y) ≡
∫ ∫

R(x − u, y − v) K(u, v, x, y) dudv (3.2)

Here B(x, y) represents the change in the sky background, and K(u, v, x, y) is a
spatially-varying convolution kernel relating the point-spread function on the ref-
erence frame to the point-spread function on the image frame at spatial position x, y.
We model the convolution kernel

K(u, v, x, y) =
∑

i

ai(x, y)bi(u, v) (3.3)

as the sum of a set of basis functions bi(u, v) each formed as a product of a two-
dimensional Gaussian function of u and v with a polynomial of degree 2 in u and
v. For the basis functions we use 3 Gaussian components with sigmas of 2.1 pix,
1.3 pix and 0.7 pix and associated polynomial degrees of 2, 4 and 6 respectively. To
allow for the kernel’s spatial dependence, the coefficients ai(x, y) are polynomials of
degree 2 in x and y. The kernel is also normalised to a constant integral over u and
v for each x and y, thus ensuring a constant photometric scale factor between the
reference frame and image frame. We model the differential sky background B(x, y)
as a polynomial of degree 2 in x and y. We solve for K(u, v, x, y) and B(x, y) in the
least-squares sense for each science frame by fitting to pixel boxes around selected
bright stars distributed uniformly across the reference frame. The kernel is assumed
to be independent of x and y within each box. A difference image is then constructed
for each science frame by rearranging Equation 3.1 to the following form and using
the solutions for K(u, v, x, y) and B(x, y):

D(x, y) = I(x, y) − R ⊗ K(x, y) − B(x, y) (3.4)

The difference image D(x, y) should simply be an image representative of the Poisson
noise in I(x, y). However, any objects that have varied in brightness in comparison to
the reference frame should show up as positive or negative pixel areas on the difference
image which may be measured to obtain the differential flux. In our analysis, each
chip was split up into 8 square sections and the difference image constructed from
solving for the kernel and differential sky background in each section. Also, a high
signal-to-noise empirical PSF for the reference frame is constructed in each section
by stacking up a set of stamps centred on suitable bright stars.
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3. The third script measures the differential flux on each difference image via optimal
PSF scaling at the position of each star. The normalised and sky-subtracted empirical
PSF constructed for each square section of the reference frame in step 2 is convolved
with the kernel corresponding to the current difference image section. The convolved
PSF is optimally scaled, at the position of the current star, to the difference image.
A 3σ clip on the residuals of the scaling is performed, and one pixel rejected. The
scaling and rejection is repeated until no more pixels are rejected. The differential
flux is measured as the integral of this scaled PSF.

A lightcurve for each star was constructed by the addition of the differential fluxes to
the star fluxes as measured on the reference frame. The following equations were used:

ftot(t) = fref +
fdiff(t)

p(t)
(3.5)

m(t) = 25.0 − 2.5 log(ftot(t)) (3.6)

where ftot(t) is the star flux (ADU/s) at time t, fref is the star flux (ADU/s) as measured
on the reference frame, fdiff(t) is the differential flux (ADU/s) at time t as measured on
the difference image, p(t) is the photometric scale factor (the integral of the kernel solution
over u and v) at time t and m(t) is the magnitude of the star at time t. Uncertainties are
propagated in the correct analytical fashion.

Flux measurements were rejected for a χ2pix−1 ≥ 5.0 for the PSF scaling, and for PSFs
with a FWHM≥7.0 pix, in order to remove bad measurements. Hence, all the stars have
differing numbers of photometric measurements. In each run, lightcurves with less than
half of the total possible epochs were rejected. For the 2000-09 run this analysis produced
8631 lightcurves on Chip 1, 7625 lightcurves on Chip 2, 8411 lightcurves on Chip 3 and
8830 lightcurves on Chip 4 (centred on the cluster). Figure 3.3 shows a diagram of the
RMS scatter in the lightcurves against instrumental magnitude for the 2000-09 run for each
chip. Similar diagrams were produced for the 1999-06 and 1999-07 runs but are not shown
here for brevity.

Since each run was treated independently for the reductions, each chip has three dif-
ferent reference frames and hence each star has three different reference magnitudes. For
a particular star, let us denote the reference magnitude from the 2000-09 run minus the
reference magnitude from the 1999-06 run by ∆m1 and the reference magnitude from the
2000-09 run minus the reference magnitude from the 1999-07 run by ∆m2. For each chip,
we have calculated the unweighted mean of ∆m1 and ∆m2 over all stars on that chip. We
then added the resulting ∆m1 and ∆m2 to the lightcurve data points in the 1999-06 and
1999-07 runs respectively. The values of the means ∆m1 and ∆m2 for each chip along with
the standard deviations about the means σ1 and σ2 respectively are presented in Table 3.3.

As can be seen from Figure 3.3, we have obtained high precision photometry with
an RMS accuracy of ∼3−5mmag at the bright end. Most stars are limited by sky noise
because all three runs were during bright time. However, the “backbone” of points on each
diagram lies above the theoretical limit by a factor of ∼1.5−2.0 depending on the chip
being considered. We put this down to systematic errors in the data due to a subset of
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(a) CCD 1 (b) CCD 2

(c) CCD 3 (d) CCD 4

Figure 3.3: Plots of standard deviation (RMS) of the lightcurves against mean instrumental Sloan r′ mag-
nitude for all stars from each chip for the 2000-09 run. The lower curve in each diagram represents the
theoretical noise limit for photon and readout noise.

Table 3.3: Magnitude offsets ∆m1 and ∆m2 added to the lightcurve data points from the 1999-06 and
1999-07 runs respectively.

Chip No. ∆m1 σ1 ∆m2 σ2

1 -0.832 0.037 -0.753 0.041
2 -0.698 0.036 -0.843 0.043
3 -0.596 0.031 -0.404 0.054
4 -0.527 0.036 -0.470 0.037

Run: 1999-06 1999-07
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Table 3.4: Number of stars with a Sloan r′ lightcurve, and the number of such stars with a Sloan r′ − i′

colour index.
Chip No. Stars With No. Stars With A Lightcurve And
No. A Lightcurve An r′ − i′ Colour Index Percentage

1 8631 8497 98.4%
2 7625 7576 99.4%
3 8411 8290 98.6%
4 8830 8672 98.2%

Total: 33497 33035 98.6%

low quality difference images and/or sections of difference images that were produced from
science frames taken on nights of poor quality seeing/atmospheric conditions.

3.4 Astrometry And Colour Data

3.4.1 Astrometry

Astrometry was undertaken by matching 358 stars from the four reference frames (one for
each chip) with the USNO-B1.0 star catalogue (Monet et al. 2003) using a field overlay in
the image display tool GAIA (Draper 2000). The WFC suffers from pincushion distortion,
hence it was necessary to fit a 9 parameter astrometric solution to the reference frames in
order to obtain sufficiently accurate celestial coordinates for all the stars. The 9 parameters
are made up of 6 parameters to define the linear transformation between pixel coordinates
and celestial coordinates, 2 parameters to define the plate centre and 1 parameter to define
the radial distortion coefficient. The starlink package ASTROM (Wallace 1998) was used
to do the fit and the achieved accuracy was ∼0.4 arcsec RMS radially for the 358 matching
stars. The astrometric fit was then used to calculate the J2000.0 celestial coordinates for
all stars with a lightcurve.

3.4.2 Colour Indices

The best image in the Sloan i′ filter was aligned with the Sloan r′ reference frame for each
chip and the magnitudes of the stars were measured using DAOPhot PSF fitting in the
same way as they were measured on the reference frame in Section 3.3.2. Table 3.4 shows
the number of stars with lightcurves that have Sloan r′ − i′ colour indices as a result.

3.4.3 Colour Magnitude Diagrams

Figures 3.4(a)-3.4(d) show an instrumental colour magnitude diagram (CMD) for each chip.
The cluster main sequence is clearly visible. Chip 4 is centred on the cluster and as expected
shows the strongest cluster main sequence. A theoretical cluster main sequence is plotted
on each diagram over the cluster main sequence. We have used the theoretical models of
Baraffe et al. (1998) for the stellar mass range 0.60M⊙ ≤ M∗ ≤ 1.40M⊙, the age of the
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cluster (1.7Gyr) and solar-type metallicity [M/H] = 0 in order to predict the main sequence
absolute magnitudes, colours and radii. Below a mass of 0.60M⊙ the Baraffe model predicts
R−I colours substantially bluer than the observed cluster main sequence, a limitation noted
in Baraffe et al. (1998). As a result we used data from Lang (1992) for the stellar mass range
0.08M⊙ ≤ M∗ ≤ 0.60M⊙. The combined model for the cluster main sequence supplies an
absolute magnitude MR, an absolute magnitude MI and a stellar radius R∗ for the stellar
mass range 0.08M⊙ ≤ M∗ ≤ 1.40M⊙. We interpolated this combined model with cubic
splines.

The interstellar medium (ISM) in the Milky Way is mostly concentrated in the Galactic
plane and the density law governing its mean distribution (ignoring small scale variations)
can be modelled by an Einasto law:

ρ(R, z) = ρ0 exp

(

−
(

R − R⊙

hR

))

exp

(

−|z|
hz

)

(3.7)

where R is the Galactocentric distance, z is the height above the Galactic plane, ρ0 is the
local density of the ISM, R⊙ is the distance of the Sun from the Galactic centre, hR is the
ISM density scale height in the R direction and hz is the ISM density scale height in the
z direction. One may derive the density ρ of the ISM as a function of distance d from the
Sun in the direction of the open cluster NGC 7789 by using trigonometrical arguments to
rewrite R and z as functions of d. In this derivation, we have assumed that the Sun has
Galactic coordinates (R, z) = (8.5kpc, 0.015kpc) and that ρ0 = 0.021M⊙pc−3, hR = 4.5kpc,
hz = 0.14kpc as given in Robin et al. (2003). In any wave band, the total extinction A as
a function of d is proportional to the integral of ρ(d) over d. Hence, absorbing the constant
ρ0 into a new constant K we have:

A(d) = K

∫ d

0
ρ(u) du (3.8)

Adopting E(B − V ) = 0.217 for the cluster (Table 3.1), we calculate the corresponding ex-
tinction to be AR ≈ 0.547 and AI ≈ 0.429 in the R and I bands respectively, evaluated with
a synthetic photometry code (XCAL) using a Galactic extinction curve from Seaton (1979).
This extinction applies to stars at the cluster distance dc = 2337pc, and hence, by numeri-
cally evaluating the integral in Equation 3.8, we may calculate values for K that apply to
the R and I bands as KR = 2.20 × 10−2magM−1

⊙ pc2 and KI = 1.73 × 10−2magM−1
⊙ pc2

respectively.

We have used the law relating extinction to distance as given in Equation 3.8 to correct
the absolute magnitudes MR and MI of the theoretical main sequence to the observed
magnitudes R(d) and I(d) respectively. In the following equations, the distance d has units
of parsecs (pc):

R(d) = MR + 5 log(d) − 5 + AR(d) (3.9)

I(d) = MI + 5 log(d) − 5 + AI(d) (3.10)

where AR(d) and AI(d) are versions of Equation 3.8 with K = KR and K = KI respectively.
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Figure 3.4: Instrumental CMDs for all stars from each chip for the 2000-09 run. The main sequence is visible
on each chip, and the theoretical cluster main sequence is overlayed as the dashed line. The straight dotted
lines are the faint limits for giant stars assuming no extinction and the law relating extinction to distance
in Equation 3.8. The transit candidates of Section 4.2 are marked on as solid circles. The errorbars on the
right hand side of each diagram represent the mean error bar on each measurement for 0.5 magnitude bins.
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Table 3.5: Offsets determined by eye between observed r′obs and r′obs − i′obs magnitudes, and theoretical
r′(dc) and r′(dc) − i′(dc) main sequence magnitudes for the cluster distance dc.

Chip No. r′obs − r′(dc) (r′obs − i′obs) − (r′(dc) − i′(dc))

1 -0.3 -0.95
2 -0.3 -0.80
3 -0.1 -0.70
4 -0.1 -0.75

Estimated
Error: ±0.1 ±0.05

Conversions between the Johnson-Cousins R and I magnitudes and the Sloan r′ and i′

magnitudes were done using the following predetermined relations presented on the Cam-
bridge Astronomical Survey Unit (CASU) webpage1:

r′ = R + 0.275(R − I) + 0.008 (3.11)

r′ − i′ = 1.052(R − I) + 0.004 (3.12)

Due to the lack of observations of standard stars, it was necessary to fit the interpolated
theoretical main sequence to the cluster main sequence on the CMD for each chip by eye,
after correcting for the cluster distance and extinction, via simple r′ and r′ − i′ offsets.
These offsets are displayed in Table 3.5. Note that the required horizontal and vertical
shifts are correlated, since shifts parallel to the main sequence would have no effect if
the main sequence were a straight line. Fortunately, the kink (change of slope) in the
main sequence near the spectral type K0 (0.8M⊙) allows us to estimate both vertical and
horizontal shifts. This feature is clearly visible on all 4 chips.

3.4.4 Stellar Masses, Radii And Distances

The identification of the cluster main sequence on each CMD allows a model-dependent
mass, radius and distance for each star to be determined using the theoretical main se-
quence, assuming that each star is a main sequence star. Giant stars (MK Luminosity
Class III) have absolute magnitudes in the range 1.7 ≤ MV ∼ MR ≤ −6.5 (Lang 1992).
Assuming that the Sun lies in the Galactic plane at a distance of 8.5kpc from the Galactic
centre (the IAU value) and assuming that the Galactic disk has a radius of 14.0kpc (Robin,
Crézé, & Mohan 1992), then the distance to the edge of the Galaxy in the direction of
NGC 7789 may be calculated as ∼8.1kpc using elementary trigonometry. The magnitude
of the dimmest giant at 8.1kpc assuming no extinction is R = 16.2 and, assuming the
law relating extinction to distance in Equation 3.8, the dimmest giant has a magnitude of
R = 16.9. These faint limits are marked on the CMDs in Figures 3.4(a)-3.4(d) as dotted
lines. From this simple argument it can be seen that only the brightest stars in our sample
will be contaminated with giant stars.

1http://www.ast.cam.ac.uk/∼wfcsur/index.php
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Figure 3.6: Top: A plot of r′ magnitude against star radius for all four chips. The continuous line is
the theoretical cluster main sequence. Bottom: Standard deviation (RMS) of the lightcurves against star
radius for all four chips. The continuous curves are the detection limits for a planet of the quoted radius as
a function of star radius (see Section 3.4.5).
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In principle, for each star on the CMD, it is possible to choose a value for the distance
parameter d in Equations 3.9 and 3.10 such that the theoretical main sequence passes
through the star’s position on the CMD. The solution d = d∗ is then the distance to the
star. The star mass M∗ and radius R∗ may subsequently be determined from where the star
lies on the theoretical main sequence at a distance of d∗. Figure 3.5 shows the grid of star
masses and distances used for Chip 4. The solid vertical lines represent lines of constant
stellar mass (and radius), and are labelled at the top of the diagram in units of M⊙. The
“diagonal” dashed lines represent theoretical main sequence models at different distances,
and the distances are labelled to the right and bottom of the diagram in units of parsecs.
Fiducial spectral types are marked on the cluster theoretical main sequence for clarity.

Due to the steepness of the theoretical main sequence in the CMD for star masses greater
than 0.80M⊙, the determined star properties become more uncertain above 0.80M⊙. Also,
the theoretical main sequence that we have used terminates at a mass of 1.40M⊙, which
leads to a small region where there are no solutions for d∗. In Figure 3.5, this region is
blueward of the thick continuous line (corresponding to a mass of 1.40M⊙). Stars with
no solution for d∗ have masses greater than 1.40M⊙ (and radii greater than 1.70R⊙) and
large distances. It is around these stars that it is hardest to detect a transiting planet and
hence a lack of solution for d∗, M∗ and R∗ will hardly affect the completeness of our survey.
Table 4.2 shows the star masses, radii and distances obtained by the above procedure for
the transit candidates discussed in Section 4.2. The star r′− i′ colours have been corrected
where necessary for any lightcurve variations (since the reference frame from which the r′

magnitude was determined has a different epoch to the i′ frame from which the i′ magnitude
was determined).

In Figure 3.6 we plot the r′ magnitude and standard deviation (RMS) of the lightcurve
of each star versus the stellar radius derived from the main-sequence model and the observed
r′ − i′ colour index. A vertical stripe of stars is evident with R∗ ∼ 0.75 R⊙. This arises
because of a relatively rapid change in the colour index with mass for the theoretical main
sequence in this mass range. This effect is also evident in Figure 3.5, where the vertical
iso-mass lines are more widely spaced for 0.5M⊙ < M∗ < 0.8M⊙. If the mass function and
mass-radius relationship for main sequence stars are both smooth, then this effect represents
a deficiency in the R − I colour index of the stellar models. The mass-radius relationship
for our theoretical main sequence is shown in Figure 3.7.

In order to test the theoretical main sequence that we have adopted, we compared it to
observations of solar neighbourhood main sequence stars in the MR versus R − I domain.
The data on the main sequence stars were taken from Bessell (1990)2. The result is shown
in Figure 3.8 where we plot our adopted theoretical main sequence (filled circles), the cubic
spline (continuous line), the Baraffe et al. (1998) model (stars) and the observed main
sequence stars (small filled squares). The numbers marked on the diagram are the star
masses (in units of Solar mass) corresponding to our theoretical main sequence model. The
diagram clearly shows the shortcomings of the Baraffe model for M∗ < 0.60M⊙, and we
note that although there seems to be a good agreement between our adopted theoretical
main sequence and the observations, there is a small discrepancy of ∼0.02 mag in R − I.

2This data may be found at: http://www-int.stsci.edu/∼inr/cmd.html
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Figure 3.8: Plot of the theoretical main sequence (filled circles), the cubic spline (continuous line), the
Baraffe et al. (1998) model (stars) and the observed main sequence stars (small filled squares) in the MR

versus R − I domain. The numbers marked on the diagram are the star masses (in units of Solar mass)
corresponding to the theoretical main sequence model.
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3.4.5 Number Of Expected Transiting Planets

We would like to estimate, for a specific signal-to-noise ratio, the accuracy required per
photometric measurement in order to detect a transiting planet of radius Rp orbiting a star
of radius R∗. By working in units of magnitude rather than units of flux, and by following
the same reasoning as in Section 2.4.4, we can derive:

S/N =
∆m

σ

√

NoutNin
Nout + Nin

(3.13)

where ∆m is the transit depth in magnitudes and σ is the uncertainty in each photometric
measurement in magnitudes. The numbers Nout and Nin are the number of data points
out-of-transit and in-transit respectively. Let us consider the limit when Nout ≫ Nin.
Then, from Equation 3.13, we have:

S/N ≈ ∆m
√

Nin

σ
(3.14)

Let m0 be the magnitude of the star out-of-transit and min be the magnitude of the star
during transit, and let f0 be the star flux out-of-transit and fin be the star flux during
transit. Also, let z be the magnitude zero point. Then:

∆m = min − m0

= z − 2.5 log(fin) − z + 2.5 log(f0)

= −2.5 log

(

fin
f0

)

= −2.5 log

(

1 − ∆f

f0

)

(3.15)

In the last line we have used Equations 2.28 and 2.29. Substitute Equation 2.26 into
Equation 3.15 to get:

∆m = −2.5 log

(

1 −
(

Rp

R∗

)2
)

(3.16)

Finally, substitute Equation 3.16 into Equation 3.14:

S/N ≈ −2.5
√

Nin

σ
log

(

1 −
(

Rp

R∗

)2
)

(3.17)

For random sampling of the orbital period P , the probability that a given data point
catches a transit is ∆t/P , where ∆t is the transit duration. For a HD 209458b-like system
(∆m ≈ 15mmag, ∆t ≈ 3 h, P ≈ 3.5 d), this fraction is ∆t/P = 3.5% and thus N ∼30 of our
880 lightcurve data points would catch a transit. For our survey, a star with σ ≈ 10mmag
would allow detection of HD 209458b-like transits with S/N≈8. In Section 4.1 we adopt a
more conservative transit detection threshold S/N≈10. Taking S/N=10 and N = 30, and
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given a value for Rp, we may calculate the required RMS accuracy σ as a function of stellar
radius R∗ by rearranging Equation 3.17. These curves are plotted in Figure 3.6 (bottom)
for planetary radii of 0.5RJ, 1.0RJ, 1.4RJ and 2.0RJ.

By counting the number of stars that lie beneath each of the continuous curves in
Figure 3.6 (bottom), we obtain estimates for the number of stars that achieve the required
accuracy in their lightcurves to enable detection of a planet of the quoted radius. Using
this criterion, we expect our sample to contain 21 stars for which we can detect a planet
of radius 0.5RJ, 1451 stars for which we can detect a planet of radius 1.0RJ, 5068 stars
for which we can detect a planet of radius 1.4RJ and 12080 stars for which we can detect
a planet of radius 2.0RJ. Assuming that ∼1% of main sequence stars have a 1.4RJ hot
Jupiter companion, and that ∼10% of such systems exhibit transits, then we may expect
∼5 stars in our sample to reveal planetary transits. In Chapter 5, we will model in more
detail the number of hot Jupiters that we expect to detect from our survey using Monte
Carlo simulations.

3.5 Summary

This chapter has been used to introduce the University of St Andrews Planet Search in
open clusters and the motivation behind such a survey. More specifically we have reported
on the observations of NGC 7789 that were made with the Isaac Newton Telescope in La
Palma during three runs in 1999 and 2000. We have described the reduction procedures
and photometry methodology that were employed on the data, which were subsequently
developed into an efficient data pipeline for future use on similar data sets. The pipeline is
split into a preprocessing C-shell/IRAF script that carries out the CCD calibrations, and
a DIA package that carries out differential photometry.

We have described how we achieved the astrometry calibrations and obtained colour
measurements for the stars. We have shown how we used the colour magnitude diagrams
along with a theoretical main sequence model and a law relating extinction to distance in
order to derive stellar masses, radii and distances for the majority of stars in our data set.
Finally, we have estimated how many transiting hot Jupiter planets we expect to detect
from the data by considering a simple signal-to-noise calculation.



4
21 Eclipsing Binaries And 3 Planetary

Transit Candidates

At this stage we have ∼33000 stars with a lightcurve, and a model-dependent mass, radius
and distance. Our next job in the search for hot Jupiters in the field of NGC 7789 is to
detect any eclipses that might be present in the lightcurve data and to analyse these transit
candidates in detail in order to determine whether they are consistent with a transiting
planet model. Many of these transit candidates are actually eclipsing stellar binaries,
although this is not obvious without carefully modelling the photometric data.

4.1 Transit Detection

We used a matched filter algorithm to search for transits in the lightcurves. Adopting a
square “boxcar” shape for the transit lightcurve, the transit model has 4 parameters: the
out-of-eclipse magnitude m0, the time of mid-transit t0, duration ∆t and depth ∆m. We
search for transits with durations ranging from 0.5 h to 5 h, spanning this range with 12
values of ∆t spaced by factors of 1.23. We move the transit centroid t0 through the data
in steps of ∆t/4. As illustrated in Figure 4.1, we fit both a constant and a boxcar transit
lightcurve to the data points in a window of width 5∆t centred on each value of t0. Our
transit detection statistic is:

S2
tra ≡ χ2

const − χ2
tra

(

χ2
out

Nout − 1

) (4.1)

where χ2
tra is the chi squared of the boxcar transit fit, χ2

const is the chi squared of the
constant fit, χ2

out is the chi squared of the boxcar transit fit for the Nout out-of-transit
data points. The statistic S2

tra is effectively the squared signal-to-noise ratio of the fitted
transit signal renormalised to the reduced chi squared of the out-of-transit data points.
This modified matched filter algorithm was designed to help downweight systematic errors
with χ2

out/ (Nout − 1) > 1 (and serendipitously, variables), since transit signals should
have χ2

out/ (Nout − 1) ∼ 1.
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Figure 4.1: An example boxcar transit fit showing the in-transit and out-of-transit zones (continuous line)
and the constant fit (dashed line). The horizontal axis is time (days) and the vertical axis instrumental
Sloan r′ magnitude. “Statistic” is the value of the transit statistic S2

tra for this fit.

The transit detection algorithm outlined above was applied to the 1999-07 and 2000-
09 runs. Initial tests with S2

tra generated many spurious transit candidates in which the
transit fit matched low data points at the beginning or end of a night. To suppress these we
introduced additional requirements on the number of in-transit and out-of-transit lightcurve
data points. For the densely sampled 2000-09 run, we required at least 3 in-transit and 8
out-of-transit lightcurve data points for a transit detection. For the more sparsely sampled
1999-07 run, we required at least 2 in-transit and 6 out-of-transit lightcurve data points for
a transit detection. The time sampling in the 1999-06 run was too sparse to support transit
hunting via the above technique.

In each lightcurve the highest value of S2
tra on each night was identified, and those with

S2
tra ≥ 100 (equivalent to S/N ≥ 10) were retained for closer examination. Table 4.1 lists for

each chip the number of raw candidate transits thereby selected over the two runs. Despite
the high signal-to-noise threshold for detection, 2182 raw transit candidates were found. A
careful visual inspection of the corresponding lightcurves lead us to reject the majority of
these based on a number of criteria. The majority of the raw transit candidates (61.8%)
were rejected because they appeared to represent a single much fainter data point resulting
from a “bad” section in one of the difference images. Such cases were readily identifiable
because the lightcurves of many stars triggered a transit detection at the same epoch. A
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Table 4.1: The number of raw transit candidates and remaining transit candidate lightcurves after the
weeding process for each chip over the two runs.

No. Raw Transit No. Remaining Transit
Chip No. Candidates Candidate Lightcurves

1 617 9
2 311 5
3 721 6
4 533 4

Total: 2182 24

large number of variable stars were picked up (∼ 100 lightcurves ≡ 19.5% of the raw transit
candidates), which we plan to present in a forthcoming paper. Lightcurves showing eclipses
with clearly different depths were also assigned as variable stars since a stellar binary is
indicated in this case.

For the remaining raw transit candidates we examined the star on the reference frame.
This revealed that many of the remaining transit signatures were caused by the following
(in order of most common occurence):

1. Image defects detected as “stars” (4.5%).

2. Stars lying on or close to image defects, bad columns and/or saturation spikes (4.0%).

3. Stars close to saturation (3.7%).

4. Very closely blended stars (2.1%).

5. Stars close to the edge of the CCD (0.8%).

The reference image for each chip contained a large number of saturated stars along with
large saturation spikes which unfortunately increased the incidence of such false alarms.

For the transit candidate lightcurves that survived to this point, we checked the differ-
ence images for the night(s) of the suspected transit(s) by constructing a difference image
movie. This revealed that a handful of the candidates (0.6%) were the result of a consec-
utive set of poor subtractions at the star position. The other candidates clearly showed
a flat difference image followed by a growing and then diminishing “dimple”, indicating a
drop and then recovery in the brightness of the star.

We discuss in Section 4.2 below the 24 transit candidate lightcurves that passed all
of the data quality tests outlined above. Reference to a transit candidate from now on
refers only to one of these transit candidate lightcurves. Figure 4.2 shows all tests for
which S2

tra ≥ 10 and highlights the eclipse with the greatest value of S2
tra for each transit

candidate. Table 4.2 details the number of fully and partially observed eclipses that are
present for each transit candidate and how these eclipses are distributed between the three
runs. Table 4.2 also lists the J2000.0 celestial coordinates for each transit candidate.
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Figure 4.2: The transit statistic S2

tra against the out-of-transit reduced chi squared χ2

out / (Nout − 1). The
initial transit detection threshold shown by the horizontal line is set at S2

tra = 100. The strongest transits
detected in the lightcurves of the 24 stars that survived subsequent data quality tests are plotted as solid
circles. The blank semicircular region is saturated with test points.

4.2 Transit Candidates

4.2.1 Theoretical Models

The lightcurves of the 24 transit candidates selected in Section 4.1 were modelled as a star
and planet system in the following way. We assume spherical stars, a luminous primary of
radius R∗ and a dark massless companion of radius Rc in a circular orbit with radius a and
period P inclined by the inclination i relative to our line of sight. The time t0 is the time of
mid-eclipse of the primary by the companion. Since we already know R∗, the parameters
that need to be constrained for such a system are P , t0, i, Rc and a constant magnitude
m0. Periodic variations in the apparent brightness of the star were also accounted for in
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three different ways, leading to three competing planetary transit models:

f1(t) = f0(1 − fc(t)) Model 1

f2(t) = f1(t)

(

1 + A sin

(

2π(t − t0)

Pvar
+ φ

)

)

Model 2

f3(t) = f1(t)

(

1 − Ce cos

(

4π(t − t0)

P

)

− Ch cos

(

2π(t − t0)

P

)

) Model 3

(4.2)

The function fn(t) is the predicted stellar flux at time t for Model n, f0 is a constant flux
value and fc(t) is the fraction of the total stellar flux obscured by the companion at time t.
We set the linear limb darkening coefficient to u = 0.5 and calculate the function f1(t)/f0

using the program transitcurve.pro (see Section 2.4.3).

Model 1 is therefore appropriate for a star with a constant brightness. Model 2 incor-
porates sinusoidal stellar flux variations of semi-amplitude A and phase φ which do not
necessarily have the same period as the orbital period of the companion. Such variations
may be present for stars with a lot of star spot activity. Model 3 incorporates stellar flux
variations due to two effects. The first effect, modelled by the Ce cosine term, is due to
the star being tidally distorted into an ellipsoidal shape by the companion and rotation-
ally synchronised. The value of Ce quantifies the semi-amplitude of such ellipsoidal flux
variations. The second effect, modelled by the Ch cosine term, is due to heating on one
side of the companion caused by irradiation by the star. The value of Ch quantifies the
semi-amplitude of the heating term.

4.2.2 Lightcurve Modelling Procedure

The aim of the lightcurve modelling procedure is to rule out as far as possible the tran-
siting planet model as presented in Section 4.2.1. For nearly half of the transit candi-
date lightcurves, out-of-eclipse variations were present, and in many cases these variations
changed in amplitude and/or phase between the 1999-06, 1999-07 and 2000-09 runs. Hence
it was often necessary to consider each run separately for some or all of the following anal-
ysis. Tables 4.3 and 4.4 show the results of the fits of the transiting planet model to the
lightcurves. The tables give either a single row per star for fits to all three runs, or three
rows per star when the three runs were fitted separately, in which case the first, second and
third rows apply to the 1999-06, 1999-07 and 2000-09 runs respectively.
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Table 4.2: Star and lightcurve properties for the transit candidates. Star numbers in the ranges 1-19999, 20000-39999, 40000-59999 and 60000-79999
correspond to the chips 1, 2, 3 and 4 respectively. The number in brackets indicates the uncertainty on the last decimal place. Columns 2 and 3 are
calibrated r′ and r′ − i′ using the shifts in Table 3.5. Columns 6-8 indicate the number of fully and partially observed eclipses (f,p) that are present
in the lightcurve of the corresponding run. The transit candidates are classified into the following categories: E = Eclipsing binary, EA = Algol type
eclipsing binary, RS = RS Canum Venaticorum type eclipsing binary, CV = Cataclysmic variable, INT-7789-TR = Transit candidate that warrants
further observations.

Star No. r′ r′ − i′ Mass Radius Distance 1999-06 1999-07 2000-09 RA Dec Variable
(mag) (mag) (M⊙) (R⊙) (pc) f,p f,p f,p (J2000.0) (J2000.0) Class

711 20.619 1.133(18)a 0.620(9) 0.586(10) 2378(133) 1,1 2,2 5,1 23 58 39.38 +56 36 44.7 RS or CV
791 18.077 0.569(17) 0.949(33) 0.947(42) 2908(13) 0,0 0,1 0,0 23 58 36.75 +56 26 56.1 E
1031 19.140 0.538(9) 1.028(22) 1.062(35) 5762(11) 0,0 0,1 0,2 23 58 33.88 +56 37 04.9 E
1262 18.900 0.788(9)a 0.740(3) 0.707(3) 2037(39) 0,5 2,3 5,2 23 58 29.19 +56 32 42.7 RS
5917 16.724 0.55(8)b 0.94(17) 0.93(25) 1589(17) 0,1 1,2 0,0 23 57 12.86 +56 31 26.5 EA
5974 19.346 0.606(12)a 0.897(23) 0.882(29) 4346(31) 0,0 0,1 0,1 23 57 11.92 +56 31 24.9 RS
6995 21.120 1.853(19) 0.239(6) 0.245(4) 752(4) 0,1 1,0 1,1 23 56 57.23 +56 34 03.4 E
7628 19.420 1.298(9)a 0.544(5) 0.507(4) 1043(14) 1,0 2,0 2,0 23 56 47.64 +56 36 28.7 RS
7695 19.447 0.999(10) 0.666(4) 0.635(4) 1799(4) 0,0 0,0 0,1 23 56 46.79 +56 36 13.8 E
21790 19.728 0.562(13)a 0.980(23) 0.988(34) 6619(59) 1,1 3,0 2,1 23 55 59.17 +56 45 14.1 EA
22688 19.981 0.925(12)a 0.701(4) 0.671(4) 2647(51) 1,2 3,1 5,2 23 55 18.41 +56 43 14.3 RS
22738 17.650 0.64(9)a 0.81(12) 0.78(14) 1578(10) 0,0 0,1 0,2 23 56 01.68 +56 43 08.3 RS
23979 20.088 0.773(18)a 0.751(5) 0.716(5) 3564(20) 0,0 1,1 1,1 23 55 58.93 +56 40 29.6 E
24512 17.338 0.695(45) 0.759(23) 0.723(24) 1168(2) 0,1 0,1 0,1 23 55 42.99 +56 39 14.9 E
45134 20.703 0.632(32) 0.87(5) 0.84(6) 7291(30) 0,0 0,1 1,0 23 57 45.06 +56 55 36.6 INT-7789-TR-1
46271 20.323 1.025(19)b 0.662(8) 0.630(8) 2545(79) 0,0 1,1 3,2 23 57 29.99 +56 57 34.3 RS
46691 18.024 0.467(8) 1.195(22) 1.348(37) 5348(7) 0,0 0,0 1,0 23 57 24.52 +56 55 17.6 INT-7789-TR-2
47171 17.571 0.427(10)a 1.33(4) 1.57(7) 5599(85) 0,3 1,2 3,1 23 57 18.04 +56 51 12.0 EA
49512 19.553 0.971(9) 0.679(4) 0.649(4) 1995(5) 1,0 0,0 2,1 23 56 47.11 +56 51 10.2 INT-7789-TR-3
50313 17.368 0.62(7) 0.82(10) 0.79(12) 1477(2) 0,1 0,1 0,2 23 56 36.67 +56 52 43.4 RS
61876 20.865 0.560(37) 0.98(8) 1.00(13) 11312(52) 0,0 1,0 1,0 23 58 27.34 +56 46 36.4 E
62983 20.402 0.616(24) 0.89(5) 0.87(6) 6784(22) 0,0 0,0 3,2 23 58 13.37 +56 45 36.1 E
64804 20.080 1.516(9) 0.399(6) 0.379(5) 526(2) 0,1 0,0 1,0 23 57 51.16 +56 42 03.2 E
73852 18.984 0.797(18)a 0.743(6) 0.710(5) 3423(84) 0,0 1,0 2,1 23 56 11.77 +56 45 55.6 RS

aColour corrected using the lightcurve model. bColour corrected using interpolation of the lightcurve.
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The procedure used to model the transit candidate lightcurves is as follows. Each
lightcurve was inspected and the best-defined eclipse chosen. The lightcurve data for the
night on which this eclipse occured were fitted with Model 1 keeping the inclination fixed
at 90.0◦ (we call this a central transit fit). This fit determines a time of mid-transit t0, a
constant magnitude m0, a companion radius Rc,min and a transit duration ∆t. The value
of Rc,min is the minimum radius of a companion given the eclipse profile, since at lower
inclination values the same size companion obscures a smaller fraction of the total stellar
flux due to limb darkening effects and the possibility that the eclipse is grazing instead of
annular. Hence, at lower inclinations a larger companion radius is required to account for
the observed eclipse depth. If no other eclipses were present in the lightcurve then the value
of Rc,min is presented in Tables 4.3 and 4.4 as the value of Rc for a fixed inclination of
90.0◦, along with the fitted values of t0, m0 and ∆t. Out-of-eclipse variations, if present,
were also fitted by including the relevant parameters in the central transit fit.

When more than one eclipse was evident in the lightcurve, we constructed an eclipse
periodogram in order to determine the orbital period P . Folding the lightcurve around
the time of mid-transit t0 using the period P , we then calculate the chi squared χ2

const
of a constant fit to the folded lightcurve and the chi squared χ2

central of the previously
determined central transit model optimally scaled to fit the folded lightcurve at time t0.
We thereby define:

∆χ2 = χ2
const − χ2

central (4.3)

representing the improvement in χ2 at period P for the scaled central transit model as
opposed to the constant model. The period producing the highest value of ∆χ2 is adopted
as the best fit. Since the ratio of the eclipse duration to the orbital period is generally small,
and with many orbital cycles elapsing over the span of our observations, the above method
can lead to very accurate period determinations. We obtained a conservative estimate for
the uncertainty in P by fitting a gaussian to the local peak in ∆χ2 and calculating the half
width half maximum.

On folding the lightcurve on the period P determined by the eclipse periodogram, it
sometimes became obvious that the true period was 2P , in which case the value of P was
updated. If out-of-eclipse variations were present, then the folded lightcurve would reveal
whether or not Pvar = P . If it was the case that Pvar 6= P , then a sine periodogram was
constructed in order to determine Pvar, using the lightcurve with the eclipses masked out.
The method used is the same as that for an eclipse periodogram, except that a sine curve
and a cosine curve both of period P are optimally scaled to the folded lightcurve instead of
the central transit model, and a value of chi squared χ2

sine calculated. The value of Pvar so
determined was usually not very accurate due to the sine curve cycle being the same length
as the period being tested, and due to the fact that a single run was often used instead of
all three as a result of the changing amplitude and/or phase of the out-of-eclipse variations.
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Table 4.3: Lightcurve and companion properties for the transit candidates as obtained from the fit of the transiting planet model to the lightcurve data.
See Section 4.2.1 for the definitions of the parameters in the column headers. Column 4 is calibrated r′ magnitude using the shifts in Table 3.5. The
column marked χ2/N is the reduced chi squared of the fit.

Star No. t0 − 2451000.0

»

Pvar
P

–

m0 ∆m ∆t i Rc A or Ce φ (rad) or Ch χ2/N

(d) (d) (r′ mag) (mag) (h) (◦) (R⊙)

711 808.4805(11)

»

0.450285(20)
0.450285(20)

–

(

20.668
20.666
20.619

0.40
0.31
0.24

1.47
1.47
1.33

81.1(3.4)
76.3(3.6)
82.2(1.0)

0.33(8)
0.40(6)
0.25(1)

A = 0.0323
A = 0.0395
A = 0.1008

φ = 3.292
φ = 3.015
φ = 3.484

0.97
1.06
2.54

791 384.481(4)

»

−
−

–

18.077 0.25 2.50 90.0* 0.39(2) − − 3.57

1031 801.584(9)

»

−
3.6216(53)†

–

19.140 0.12 5.20 90.0* >0.32 − − 2.31

1262 805.5611(7)

»

0.856336(40)
0.856336(40)

–

( 18.937
18.931
18.900

0.141
0.156
0.093

1.68
1.81
1.59

83.1(5)
74.3(2.0)
83.7(9)

0.353(10)
0.83(10)
0.276(9)

A = 0.0116
A = 0.0089
A = 0.0411

φ = 1.524
φ = 3.011
φ = 1.512

12.3
6.86
5.00

5917 391.5539(9)

»

1.03377(75)
1.03377(75)

–

(

16.741
16.724

−

0.14
0.16
−

2.34
2.21
−

89.8(9.8)
83.0(2)

−

0.29(22)
0.33(9)

−

Ce = 0.0021
Ce = 0.0010

−

Ch = 0.0085
Ch = 0.0138

−

2.74
4.56
−

5974 798.5967(14)

»

7.5(1.9)
−

–

19.346 0.055 3.24 90.0* >0.18 A = 0.0108 φ = 2.745 1.32

6995 798.4653(5)

»

−
1.310743(98)

–

21.120 0.39 1.28 84.8(2) 0.245(12) − − 1.95

7628 808.6076(7)

»

1.759555(93)
1.759555(93)

–

( 19.378
19.373
19.420

0.15
0.15
0.16

1.60
1.62
1.70

85.0(3.0)
85.2(1.7)
83.7(6)

0.23(19)
0.23(11)
0.33(4)

A = 0.0354
A = 0.0364
A = 0.0224

φ = 4.422
φ = 4.289
φ = 1.275

1.94
1.80
2.27

7695 805.4288(19)

»

−
−

–

19.447 0.35 4.61 90.0* 0.309(2) − − 2.84

21790 801.5709(8)

»

0.800610(96)
0.800610(96)

–

19.728 0.081 1.81 78.7(6) 0.261(19) Ce = 0.0103 Ch = 0.0016 1.23

22688 800.6104(8)

»

0.904404(53)
0.904404(53)

–

(

20.051
20.003
19.981

0.15
0.18
0.18

1.83
1.93
1.92

73.2(3.1)
73.9(1.6)
73.8(9)

0.67(17)
0.67(8)
0.67(5)

A = 0.0073
A = 0.0255
A = 0.0357

φ = 0.299
φ = 6.168
φ = 0.539

2.60
4.36
2.65

22738 800.6278(12)

»

2.769(50)
2.769(50)

–

( −
−

17.650

−
−

0.17

−
−

2.87

−
−

89.9(2)

−
−

0.27(5)

−
−

A = 0.0078

−
−

φ = 2.640

−
−

1.91

23979 798.5229(11)

»

−
−

–

20.088 0.56 2.56 90.0* 0.426(3) − − 2.05

24512 387.457(11)

»

−
−

–

17.338 0.11 3.36 90.0* >0.20 − − 3.38

†Uncertain period (see Section 4.2.3). *Inclination fixed and ∆t fitted (central transit fit).
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Table 4.4: Lightcurve and companion properties for the transit candidates (continued) as obtained from the fit of the transiting planet model to the
lightcurve data. See Section 4.2.1 for the definitions of the parameters in the column headers. Column 4 is calibrated r′ magnitude using the shifts in
Table 3.5. The column marked χ2/N is the reduced chi squared of the fit.

Star No. t0 − 2451000.0

»

Pvar
P

–

m0 ∆m ∆t i Rc A or Ce φ (rad) or Ch χ2/N

(d) (d) (r′ mag) (mag) (h) (◦) (R⊙)

45134⋄ 806.4638(21)

»

−

58(12)‡

–

20.703 0.072 5.96 89.1(3) 0.42(22) − − 1.65

46271 801.1921(8)

»

0.902117(61)
0.902117(61)

–

(

−
20.324
20.323

−
0.18
0.22

−
1.82
1.91

−
75(11)
75.2(2)

−
0.63(41)
0.628(18)

−
A = 0.0238
A = 0.0647

−
φ = 3.354
φ = 2.321

−
2.30
2.01

46691⋄ 805.5405(9)

»

−

1.8(1.3)‡

–

18.024 0.021 2.50 81.9(1.6) 0.185(9) − − 1.44

47171 805.5715(12)

»

0.856026(73)
0.856026(73)

–

( 17.590
17.613
17.571

0.069
0.085
0.130

2.52
2.76
2.97

69.4(3.3)
67.6(5.7)
72.6(9)

0.51(18)
0.67(28)
0.58(6)

Ce = 0.0109
Ce = 0.0088
Ce = 0.0172

Ch = 0.0097
Ch = 0.0000
Ch = 0.0046

3.07
2.85
1.09

49512⋄ 800.6203(7)

»

−

1.2431(58)

–

(

−

−

19.553

−

−

0.070

−

−

1.72

−

−

87.1(1.2)

−

−

0.151(7)

−

−

−

−

−

−

−

−

1.28

50313 798.6707(15)

»

−
5.664(16)

–

( −
−

17.368

−
−

0.16

−
−

3.68

−
−

84.6(1)

−
−

0.79(12)

−
−
−

−
−
−

−
−

2.83

61876 807.5492(8)

»

−
−

–

20.865 0.13 2.03 90.0* 0.30(4) − − 0.74

62983 806.5823(9)

»

−
1.074(20)

–

( −
−

20.402

−
−

0.18

−
−

2.12

−
−

81.3(1.1)

−
−

0.38(7)

−
−
−

−
−
−

−
−

1.80

64804 801.6078(4)

»

−
−

–

18.984 0.19 0.98 90.0* 0.141(2) − − 1.35

73852 806.4952(10)

»

1.531(18)
1.531(18)

–

( −
−

20.080

−
−

0.40

−
−

2.43

−
−

85.9(3)

−
−

0.390(11)

−
−

A = 0.0447

−
−

φ = 4.036

−
−

2.09

*Inclination fixed and ∆t fitted (central transit fit). ‡Period and inclination predicted, and ∆t fitted (see Sections 4.2.8 & 4.2.9). ⋄Transit candidates that warrant

further observations (45134≡INT-7789-TR-1, 46691≡INT-7789-TR-2 and 49512≡INT-7789-TR-3).
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The final stage in the lightcurve modelling procedure was to fit the appropriate model
to the lightcurve (we call this a full transit fit). For lightcurves where out-of-transit vari-
ations were present, the choice between Model 2 and Model 3 was made by adopting the
model that produced the smallest χ2 when the component of the model accounting for the
stellar brightness variations was fitted to the lightcurve with the eclipses masked out. The
transiting planet model was fitted by calculating the χ2 of the chosen model for a grid in
orbital inclination i and companion radius Rc, optimising the remaining parameters of the
model at each grid point, and using the values of t0, P and Pvar determined earlier as initial
values. The value of P was not adjusted in the fit if it had been determined from an eclipse
periodogram using lightcurve data from all three runs and if the lightcurve data being fitted
were from a single run (since this value of P is already more accurate than that which can
be determined from a single run). The minimum of the constructed χ2 surface indicates
the best fit values for i and Rc. From the fitted parameters an updated transit duration ∆t
was calculated. Confidence regions at the 1, 2 and 3σ levels were calculated by constructing
contours at χ2 = χ2

min + 2.30, χ2
min + 6.17 and χ2

min + 11.8 where χ2
min is the minimum χ2

value. The uncertainties on i and Rc were obtained by projecting the χ2
min +1.0 confidence

region onto each parameter axis. The uncertainties so derived on these parameters can be
quite large due to the strong correlation between i and Rc. It is possible to choose a family
of values for i and Rc that produce approximately the same eclipse depth and duration,
where only the shape of the eclipse differs slightly. Our observations were not always of
sufficient accuracy and/or frequency to strongly constrain the eclipse shape and hence the
confidence regions can be quite extensive.

At this stage, various arguments can be invoked to rule out the transiting planet model.
Firstly, if on folding the lightcurve on the orbital period P it becomes apparent that there
are eclipses of different depth, then we classify the system as an eclipsing stellar binary.
Similarly, if out-of-eclipse variations are present and the lightcurve data are best modelled
by Model 3 (ellipsoidal variations and/or heating effects), then we also classify the system
as an eclipsing stellar binary. Finally, if the companion radius (or minimum companion
radius) is greater than 0.2R⊙, then the companion is most likely to be a star based on the
known radii of hot (and cold) Jupiters to date.

In the following sections, the transit candidates have been organised into groups de-
pending on the lightcurve properties, and analysed according to the above methodology.
For brevity, the following labelling format has been adopted for the plots in these sections:

<Star No.> - <Plot Code> - <Run(s) To Which The Plot Applies>

The plot codes are as follows:

1. EP - Eclipse periodogram

2. SP - Sine periodogram

3. CM - Chi squared contour map showing the best fit solution with a cross and the 1,
2 and 3σ confidence regions with solid, dashed and shorter dashed lines respectively.
Annular, grazing and no eclipse regions are separated by thick solid lines.

4. L - Lightcurve
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5. PL - Phased lightcurve

6. CPL - Close up of phased lightcurve

7. BL - Binned lightcurve

8. CTFIT - Central transit fit

9. FTFIT - Full transit fit

4.2.3 Eclipsing Binaries With Undetermined Periods

In this section we present 7 transit candidates for which we were unable to determine a
period, although we were able to classify them as eclipsing binaries. The reason for not
being able to determine the period was due to either the presence of only one fully/partially
observed eclipse in the lightcurve and/or cycle ambiguity between eclipses.

Star 791 shows a partially observed, poorly sampled, eclipse of depth 0.25 mag in the
1999-07 data (Figure 4.3(b)) that hardly constrains the eclipse duration. Although the
period is unknown, the eclipse periodogram (Figure 4.3(a)) shows that we can rule out all
periods shorter than 1.25 d. With r′ ≈ 18.08 mag and r′ − i′ ≈ 0.57 mag we find that the
primary is a late G star of mass 0.95M⊙ that lies at d = 2.9kpc, slightly beyond the cluster.
We derive a minimum companion radius of 0.39R⊙.

Star 1031 shows three partially observed eclipses of which the best occur during the
2000-09 run (Table 4.2). Neither the eclipse depth nor duration are constrained by the
observations, although the eclipse periodogram (Figure 4.3(c)) reveals that there are only
two possible periods (3.6216±0.0053 d and 7.233±0.010 d). We plot the 2000-09 lightcurve
folded on the shorter period in Figure 4.3(d). The star has r′ ≈ 19.14 mag and r′ − i′ ≈
0.54 mag giving a primary star mass of 1.03M⊙ and suggesting that it is a G star similar to
our Sun that lies beyond the cluster at d = 5.8kpc. We derive a robust minimum companion
radius of 0.32R⊙.

Star 5974 exhibits two partially observed eclipses of duration 3.2 h with a poorly
defined depth. Lightcurve modulations of amplitude 0.02 mag and period 7.5 d that are
out of phase with the eclipses suggest the presence of star spots. The 2000-09 eclipse is
shown in Figure 4.3(f). The eclipse periodogram (Figure 4.3(e)) rules out periods shorter
than 1.3 d. With r′ ≈ 19.35 mag and r′ − i′ ≈ 0.61 mag we derive a primary mass of
0.90M⊙, spectral type G6V and distance of 4.3kpc, placing the system beyond the cluster.
We derive a robust minimum companion radius of 0.18R⊙, most likely an under estimate
due to the possibility that the eclipse is deeper than the fit shown in Figure 4.3(f).

Star 7695 shows a nearly complete, well sampled, 4.6 h eclipse of depth 0.35 mag
(Figure 4.4(b)). The relatively long eclipse duration allows all periods shorter than 2.50 d
to be ruled out (Figure 4.4(a)). The star has r′ ≈ 19.45 mag and r′ − i′ ≈ 1.0 mag
suggesting a 0.67M⊙ K5V primary at d = 1.8 kpc, in front of the cluster. We derive a
minimum companion radius of 0.309R⊙.

Star 23979 exhibits one fully and one partially observed eclipse in each of the 1999-
07 and 2000-09 runs. The best defined eclipse (Figure 4.4(d)) reveals an eclipse depth of
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Figure 4.3: Eclipsing binaries with undetermined periods.
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Figure 4.4: Eclipsing binaries with undetermined periods.
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Figure 4.5: Eclipsing binaries with undetermined periods.

0.56 mag and duration 2.6 h. The eclipse periodogram (Figure 4.4(c)) rules out periods
shorter than 1.1 d, but otherwise does not suggest a likely period. With r′ ≈ 20.09 mag
and r′ − i′ ≈ 0.77 mag we find that the primary is a 0.75M⊙ K2V star at d = 3.6 kpc,
beyond the cluster. We derive a minimum companion radius of 0.426R⊙.

Star 24512 shows a partially observed eclipse in each of the three runs, leaving the
eclipse depth and duration unknown. The best eclipse is shown in Figure 4.4(f) which
suggests a minimum depth of 0.1 mag. The eclipse periodogram (Figure 4.4(e)) shows that
we can rule out periods shorter than 2.0 d. The star has r′ ≈ 17.34 mag and r′ − i′ ≈
0.70 mag suggesting another 0.76M⊙ K2V primary star that lies at d = 1.2kpc, half the
cluster distance. We derive a robust minimum companion radius of 0.20R⊙.

Star 61876 exhibits two eclipses of depth 0.13 mag and duration 2.0 h, with the best
sampled eclipse shown in Figure 4.5(b). We can rule out periods shorter than 1.15 d from
the eclipse periodogram in Figure 4.5(a). With r′ ≈ 20.87 mag and r′ − i′ ≈ 0.56 mag we
derive a primary mass of 0.98M⊙, spectral type G2V like our Sun and distance of 11.3 kpc,
well beyond the cluster and beyond the “edge” of the galaxy (see Section 3.4.4). We derive
a minimum companion radius of 0.30R⊙.

For each of the above transit candidates except star 5974, the central transit fit yields
a minimum companion radius that is greater than 0.2R⊙. This favours a stellar rather
than a planetary companion. The lack of out-of-eclipse lightcurve variations leads us to
conclude that these are eclipsing binaries. As we have already mentioned for star 5974, the
minimum companion radius of 0.18R⊙ is most likely an under estimate, and the lightcurve
shows sinusoidal out-of-eclipse variations. Therefore we class this system as a RS CVn type
eclipsing binary.

4.2.4 Eclipsing Binaries Exhibiting Secondary Eclipses

In this section we present 4 transit candidates that exhibit secondary eclipses in their
lightcurves implying that the companion is luminous. Figure 4.6 shows the folded lightcurve
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Figure 4.6: Eclipsing binaries exhibiting secondary eclipses.

for each transit candidate along with the best fit transiting planet model. The lightcurves
from the different runs are offset vertically (in magnitude) from each other in order to
highlight any changes in the out-of-eclipse variations.

Star 1262 shows eclipses of different depths (∼0.05 mag difference) in the 1999-07
lightcurve data (Figure 4.6(a)), revealing the secondary eclipse, along with lightcurve mod-
ulations that change in phase and increase in amplitude from 0.02 mag to 0.08 mag over
the three runs. The system has a period of 0.856 d, eclipses of duration 1.6 h and a primary
eclipse that decreases in depth from 0.15 to 0.09 mag over the three runs. The changing
lightcurve modulations and primary eclipse depth are suggestive of spot activity on the
primary star. The star has r′ ≈ 18.90 and r′− i′ ≈ 0.79 suggesting a 0.74M⊙ K2V primary
star that lies at d = 2.0kpc, slightly in front of the cluster. Our fits to the lightcurves are
inconclusive about the size of the secondary star (Table 4.3). We classify this system as a
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Figure 4.7: Eclipsing binaries exhibiting ellipsoidal variations and heating effects.

RS CVn type eclipsing binary.

Star 22688 is a 0.904 d eclipsing binary with eclipses of different depths (∼0.03 mag
difference - Figure 4.6(b)). The primary eclipse is of depth 0.18 mag and duration 1.9 h.
Lightcurve modulations are present that change slightly in phase and increase in amplitude
from 0.015 to 0.07 mag over the three runs, suggestive of spot activity on either star. With
r′ ≈ 19.98 and r′ − i′ ≈ 0.93 we derive a primary mass of 0.70M⊙, spectral type K4V and
distance 2.6kpc, a possible cluster member. We also derive a secondary radius similar to the
primary radius from our lightcurve modelling. Hence we classify this system as a grazing
RS CVn type eclipsing binary consisting of a pair of K4V stars.

Star 46271 shows no eclipses in the 1999-06 run. The 1999-07 and 2000-09 runs reveal
a 0.902 d eclipsing binary (Figure 4.6(c)) with eclipses of different depths (∼0.04 mag differ-
ence), where the primary eclipse is of depth 0.22 mag and duration 1.9 h. Lightcurve modu-
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lations are present that change in phase and increase in amplitude from 0.05 to 0.13 mag over
the three runs, suggestive of spot activity on either star. With r′ ≈ 20.32 and r′− i′ ≈ 1.03
we derive a primary mass of 0.66M⊙, spectral type K5V and distance 2.5kpc, another pos-
sible cluster member. Again we derive a secondary radius similar to the primary radius
from our lightcurve modelling. Hence we also classify this system as a grazing RS CVn
type eclipsing binary consisting of a pair of K5V stars.

Star 62983 only shows eclipses in the 2000-09 run due to its period of 1.07 d being close
to an integer value. It is only on folding and binning the lightcurve data that the secondary
eclipse becomes apparent (0.05 mag depth - Figure 4.6(d)). The primary eclipse is of depth
0.18 mag and duration 2.1 h. The star has r′ ≈ 20.40 and r′ − i′ ≈ 0.62 suggesting a
0.89M⊙ late G star that lies at d = 6.8kpc, twice the distance to the cluster. Our fits to the
lightcurves suggest that the size of the secondary star is ∼ 0.38R⊙. We classify this system
as an eclipsing binary, due to the absence of out-of-eclipse lightcurve variations, consisting
of a late G star primary and an early M star secondary.

4.2.5 Eclipsing Binaries Exhibiting Ellipsoidal Variations And Heating Effects

In this section we present 3 transit candidates that exhibit ellipsoidal variations and heat-
ing effects in their lightcurves which immediately implies that the companion is stellar.
Figure 4.7 shows the folded lightcurve for each transit candidate along with the best fit
transiting planet model using Model 3. The lightcurves from different runs are offset ver-
tically (in magnitude) from each other in order to highlight any changes in the amplitude
of the out-of-eclipse variations.

Star 5917 only shows eclipses in the 1999-06 and 1999-07 runs due to its period of 1.03 d
being close to an integer value. On folding and binning the lightcurve data (Figure 4.7(a)),
it becomes apparent that the phase coverage is not sufficient to detect any secondary eclipse
that might be present. The primary eclipse is of depth 0.16 mag and duration 2.2 h, and the
lightcurve modulations seem to increase in amplitude from 0.01 to 0.02 mag over the space
of 1 month. The star is the brightest transit candidate with r′ ≈ 16.72 and r′ − i′ ≈ 0.55
suggesting a 0.94M⊙ early G star that lies at d = 1.6kpc, in front of the cluster. We find
that the companion has a radius of 0.33R⊙ from our fits to the lightcurve data. Hence we
classify this system as an Algol type eclipsing binary consisting of an early G star primary
and a M3V star secondary.

Star 21790 exhibits 0.08 mag eclipses of duration 1.8 h in all three runs (Figure 4.7(b)).
The lightcurve data folded and binned on a period of 0.801 d clearly shows out-of-eclipse
ellipsoidal variations of amplitude 0.02 mag. Evidence for the heating effect is negligible
(Table 4.3) and no secondary eclipse seems to be present. With r′ ≈ 19.73 and r′−i′ ≈ 0.56
we derive a primary 0.98M⊙ G2V star like our Sun that lies at d = 6.6kpc, twice the distance
to the cluster. Our lightcurve modelling reveals that the companion has a radius of 0.26R⊙.
Hence we classify this system as an Algol type eclipsing binary consisting of a Sun-like star
orbited by a M4V star.

Star 47171 shows eclipses that increase in depth from 0.07 to 0.13 mag and lightcurve
modulations that increase slightly in amplitude from 0.04 to 0.05 mag over the three runs
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Figure 4.8: Possible long period cataclysmic variable.

(Figure 4.7(c)). The period is 0.856 d with an eclipse duration of 3.0 h. The star has
r′ ≈ 17.57 and r′ − i′ ≈ 0.43 from which we derive a primary mass of 1.33M⊙. We also
derive a companion radius of 0.58R⊙ from the fits to the lightcurve data. Hence we classify
this system as an Algol type eclipsing binary consisting of a F star primary and a K7V star
secondary that lies at d = 5.6kpc, beyond the cluster.

4.2.6 A Possible Long Period Cataclysmic Variable

Star 711 is a 10.8 h eclipsing binary (Figure 4.8) that has round-bottomed eclipses lasting
0.1 in phase and orbital modulations that peak near phase 0.2. With r′ ≈ 20.62 mag
and r′ − i′ ≈ 1.13 mag, the star falls close to the cluster main sequence (Figure 3.4(a)).
The colour index is consistent with a 0.62M⊙ K7V star at d = 2.4kpc, a possible cluster
member. Over the three runs the orbital modulations increase in amplitude from 0.1 mag
to 0.2 mag, while the eclipse depth decreases from 0.40 mag to 0.24 mag.

The orbital modulation could arise from spots on one or both stars, though this would
require a preferred longitude that remains stable over 15 months. The orbital phasing is
consistent with that of an “orbital hump” that is often seen in quiescent dwarf novae, arising
from the anisotropic emission of a “hotspot” on the rim of an accretion disk where the mass
transfer stream from the companion star feeds material into the disk. The relatively shallow
eclipse would then imply a moderate inclination so that the donor star eclipses only the
near rim of the disk and possibly the hotspot. The eclipse shape is more symmetric than
would be expected for eclipses of a hotspot, however, and a hotspot eclipse would become
deeper rather than shallower as the orbital modulation increased. We are unable to decide
which interpretation may be correct and recommend follow-up observations to resolve this
ambiguity. In any case the eclipse is too deep to be attributed to a planetary transit.
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4.2.7 More Eclipsing Binaries

In this section we present 6 transit candidates exhibiting neither easily discernible secondary
eclipses nor orbital modulations consistent with ellipsoidal variations and heating effects.
Figures 4.9 to 4.11 show for each star an eclipse periodogram, a chi squared contour map,
a folded and binned lightcurve with the best fit transiting planet model, and an unbinned
close-up of the folded lightcurve around the primary eclipse along with the best fit model.
For star 7628 the lightcurves from different runs are offset vertically to highlight changes
in the amplitude and phase of the out-of-eclipse variations. We rule out the transiting
planet model for stars 6995, 7628, 22738, 50313 and 73852 because the full transit fit
yields a companion radius greater than 0.2R⊙. For star 64804 the full transit fit admits
Rc < 0.2R⊙ but only for periods P < 1.1 d that are ruled out and hence the transiting
planet model is ruled out also for star 64804.

Star 6995 shows 4 V-shaped eclipses of depth 0.39 mag and duration 1.3 h over the three
runs. Figures 4.9(c) and 4.9(d) show the lightcurve folded on the 1.31 d period as derived
from the eclipse periodogram (Figure 4.9(a)). With r′ ≈ 21.12 mag and r′ − i′ ≈ 1.85 mag
we derive a primary 0.24M⊙ M5V star at d ∼750pc, in front of the cluster. The full transit
fit (Figure 4.9(b)) reveals that the companion is the same size as the primary and that the
eclipses are grazing. Hence the period is actually 2.62 d and we classify the system as a
grazing eclipsing binary consisting of a pair of M5V stars, an interesting discovery in that
few such systems are known.

Star 7628 has a period of 1.76 d and eclipses of depth 0.16 mag and duration 1.7 h
(Figures 4.9(e), 4.9(g) & 4.9(h)). The sinusoidal out-of-eclipse variations change in phase
and decrease in amplitude from 0.07 to 0.04 mag over the three runs, suggestive of spot
activity on the primary star. With r′ ≈ 19.42 mag and r′ − i′ ≈ 1.30 mag we derive a
primary mass of 0.54M⊙, spectral type K9V and distance 1.0 kpc, placing the system in
front of the cluster. We derive a companion radius of 0.33R⊙ and inclination 83.7◦ from
the full transit fit suggesting that the eclipses are grazing (Figures 4.9(f)). We classify this
system as a grazing RS CVn type eclipsing binary consisting of a K9V primary and a M
star secondary.

Star 22738 shows three partially observed eclipses, two of them in the 2000-09 run.
The eclipses have a depth of 0.17 mag and duration 2.9 h with a period of 2.77 d (Figures
4.10(a), 4.10(c) & 4.10(d)). The 2000-09 lightcurve exhibits modulations of amplitude
0.02 mag that are out of phase with the eclipses, suggestive of star spots on the primary
star. In fact, the folded and binned lightcurve (Figure 4.10(c)) reveals a possible 0.01 mag
secondary eclipse. The star has r′ ≈ 17.65 mag and r′− i′ ≈ 0.64 mag suggesting a 0.81M⊙

G9V primary star that lies at d = 1.6kpc, in front of the cluster. The full transit fit
(Figure 4.10(b)) reveals that the eclipses are annular, nearly central (i ≈ 89.9◦) and that
the companion has a radius of 0.27R⊙. We classify this system as an annular RS CVn type
eclipsing binary consisting of a G9V primary and a M star secondary.

Star 50313 shows four partially observed eclipses, two of them in the 2000-09 run.
The eclipses have a depth of 0.16 mag and duration 3.7 h with a period of 5.66 d (Figures
4.10(e), 4.10(g) & 4.10(h)). The 2000-09 lightcurve exhibits erratic out-of-eclipse variations
of amplitude ∼0.02 mag which we were unable to model. Such variations are most likely due
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Figure 4.10: Stars 22738 and 50313.
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Figure 4.11: Stars 64804 and 73852.
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to stellar activity/star spots on the primary star. With r′ ≈ 17.37 mag and r′−i′ ≈ 0.62 mag
we derive a primary 0.82M⊙ G9V star that lies at d = 1.5kpc, in front of the cluster. The
full transit fit (Figure 4.10(f)) reveals that the companion is the same size as the primary
and that the eclipses are grazing. Hence the period is actually 11.33 d and we classify the
system as a grazing RS CVn eclipsing binary consisting of a pair of G9V stars.

Star 73852 shows primary eclipses of depth 0.40 mag and duration 2.4 h, lightcurve
modulations of amplitude 0.09 mag that are out of phase with the eclipses (suggestive of
star spots on the primary) and a possible secondary eclipse of depth 0.05 mag (Figures
4.11(e) & 4.11(f)). The eclipse periodogram gives a period of 1.53 d (Figure 4.11(c)). The
star has r′ ≈ 20.08 mag and r′ − i′ ≈ 0.80 mag giving a primary star mass of 0.74M⊙ and
d = 3.4kpc, suggesting that it is a K2V star beyond the cluster. We derive a companion
radius of 0.39R⊙ and inclination 85.9◦ from the full transit fit suggesting that the eclipses
are just grazing (Figure 4.11(d)). We classify this system as a grazing RS CVn type eclipsing
binary consisting of a K2V primary and an early M star secondary.

Star 64804 is a difficult case in that the lightcurve data show one eclipse in the 1999-06
run with only 2 data points during the eclipse, and one well sampled eclipse in the 2000-09
run (Figure 4.11(b)). The eclipse is V-shaped of depth 0.2 mag and duration 1.0 h suggesting
that it is likely to be a grazing eclipse. With r′ ≈ 18.98 mag and r′ − i′ ≈ 1.52 mag we find
that the primary is a 0.40M⊙ M2V star that lies at only ∼530pc. A central transit fit to
the 2000-09 data (Figure 4.11(b)) yields a minimum companion radius of 0.141R⊙ due to
the small size of the primary star (0.38R⊙) from which we cannot rule out the transiting
planet model. Analysis of the shape of the single eclipse in the 2000-09 data is possible due
to the good time sampling of the observations and such an analysis may reveal whether
the eclipse is the result of an annular occultation by a smaller companion or a grazing
occultation by a larger companion. Also, we may attempt to predict the orbital period P
of the planetary companion as a function of the impact parameter b = a cos i/R∗ of the
eclipse and subsequently use the lightcurve data from the whole run to determine which
periods, and hence which values of b, may be ruled out.

For star 64804 we made a grid for the impact parameter b from 0.0 to 1.0. For each value
of b we fitted Model 1 to the single eclipse in the 2000-09 run, using the lightcurve data
from the whole run, in order to determine a time of mid-transit t0, a constant magnitude
m0, a planetary radius Rc and a transit duration ∆t. The chi squared χ2

ecl of the fit was
also calculated. The duration of a transit event (see Equation 2.19) is given by:

∆t =
PR∗

πa

√

(

1 +
Rc

R∗

)2

− b2 (4.4)

We already know M∗ and R∗, and since we have Rc and ∆t as functions of b from our fits
of the single eclipse, we may use Equations 1.8 and 4.4 to estimate P (or a) as a function
of b for the transiting planet model. For each value of b we folded the 2000-09 lightcurve of
star 64804 on the predicted period P using the fitted t0, and calculated a new chi squared
χ2

fold using the fit to the single eclipse with period P . In general, if the predicted period

is such that none of the folded lightcurve data falls during the eclipse, then χ2
fold = χ2

ecl.
However, if the predicted period is such that some of the folded lightcurve data does fall
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during the eclipse, then χ2
fold ≫ χ2

ecl, ruling out that particular period, impact parameter
and corresponding eclipse solution.

Figure 4.11(a) shows a plot of χ2
ecl versus Rc/R∗ (dashed line), which appears constant

due to the scale on the y-axis. The continuous line is a plot of χ2
fold versus Rc/R∗, which

clearly shows that χ2
fold ≫ χ2

ecl for all values of Rc from 0.141R⊙ (the minimum companion
radius with b = 0 and Rc/R∗ = 0.373) to 0.227R⊙ (b = 0.92 and Rc/R∗ = 0.600). This
is due to the fact that the predicted period is less than 1.10 d for these values of b. This
demonstrates that the transiting planet model is inconsistent with our observational data
for this star, and hence a stellar companion is favoured. Table 4.4 presents the results of
the central transit fit to the eclipse during the 2000-09 run. We have classified this system
as an eclipsing binary.

4.2.8 INT-7789-TR-1 (Star 45134)

Star 45134 exhibits one poorly sampled partially observed eclipse during the 1999-07 run
and one well sampled fully observed eclipse of depth 0.07 mag and duration 6.0 h in the
2000-09 run (Figure 4.12(b)), and as a result we were unable to determine a period for the
system. The star has r′ ≈ 20.70 mag and r′ − i′ ≈ 0.63 mag from which we derive a
0.87M⊙ late G star primary that lies far behind the cluster (d = 7.3kpc). A central transit
fit to the 2000-09 data yields a minimum companion radius of 0.188R⊙ from which we
cannot rule out the transiting planet model.

Analysing the single eclipse in the 2000-09 run using the same method as for star 64804
in Section 4.2.7 yields a predicted period of 7.0 d for b = 0 that increases rapidly with
increasing values of b. In fact χ2

fold = χ2
ecl for all b > 0.09. Figure 4.12(a) shows a plot of

χ2
ecl versus Rc/R∗ (dashed line) for b = 0 (Rc/R∗ = 0.223) to b = 1.13 (Rc/R∗ = 0.500).

The minimum value of χ2
ecl obtained is χ2

ecl = 925.0 corresponding to Rc/R∗ = 0.500, and
this is marked on Figure 4.12(a) as a horizontal shorter dashed line, along with the chi
squared values χ2

ecl = 925.0 + 1.0 and χ2
ecl = 925.0 + 4.0 corresponding to the 1 and 2σ

confidence levels.

One can see from Figure 4.12(a) that Rc/R∗ ≥ 0.243 with a 1σ confidence. This is
equivalent to stating that Rc ≥ 0.205R⊙ with a 1σ confidence. As a result, we can only
rule out the transiting planet model for this transit candidate at the 1σ level and therefore
further observations are required to confirm the conclusion that this system is an eclipsing
binary. Table 4.4 presents the solution corresponding to the minimum value of χ2

ecl including
the predicted period and inclination, and Figure 4.12(b) shows a plot of this solution along
with the lightcurve data for the night on which the eclipse occurs.

4.2.9 INT-7789-TR-2 (Star 46691)

Star 46691 shows a single 0.02 mag eclipse of duration 2.5 h during the 2000-09 run
(Figure 4.12(d)). With r′ ≈ 18.02 mag and r′ − i′ ≈ 0.47 mag we find that the primary
is a 1.20M⊙ F star at d = 5.3kpc, behind the cluster. A central transit fit to the 2000-09
data yields a minimum companion radius of 0.174R⊙ from which we cannot rule out the
transiting planet model.



4.2 Transit Candidates 82

 925

 926

 927

 928

 929

 0.25  0.3  0.35  0.4  0.45  0.5

C
hi

 S
qu

ar
ed

Planet To Star Radius Ratio

1 sigma

2 sigma

(a) 45134 - χ2

ecl (dashed line) versus Rc/R∗

- 2000-09

 20.6

 20.65

 20.7

 20.75

 20.8

 20.85

 8.25  8.3  8.35  8.4  8.45  8.5  8.55  8.6  8.65  8.7  8.75

r’ 
M

ag
ni

tu
de

HJD - 2451798.0 (days)

(b) 45134 - L & Single Eclipse Fit - 2000-09
Night 9

 806

 808

 810

 812

 814

 816

 0.12  0.14  0.16  0.18  0.2  0.22  0.24  0.26  0.28

C
hi

 S
qu

ar
ed

Planet To Star Radius Ratio

1 sigma

2 sigma

3 sigma

(c) 46691 - χ2

ecl (dashed line) versus Rc/R∗

& χ2
′

fold (continuous line) versus Rc/R∗ -
2000-09

 18

 18.01

 18.02

 18.03

 18.04

 18.05

 18.06

 18.07
 7.3  7.35  7.4  7.45  7.5  7.55  7.6  7.65  7.7  7.75  7.8

r’ 
M

ag
ni

tu
de

HJD - 2451798.0 (days)

(d) 46691 - L & Single Eclipse Fit - 2000-09
Night 8

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

D
el

ta
 C

hi
 S

qu
ar

ed

Frequency (cycles/day)

(e) 49512 - EP - 2000-09

 74

 76

 78

 80

 82

 84

 86

 88

 90

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

O
rb

ita
l I

nc
lin

at
io

n 
(d

eg
re

es
)

Planet To Star Radius Ratio

ANNULAR ECLIPSE REGION

GRAZING ECLIPSE REGION

NO ECLIPSE REGION

(f) 49512 - CM - 2000-09

 19.5

 19.55

 19.6

 19.65

 19.7
-0.2  0  0.2  0.4  0.6  0.8  1  1.2

r’ 
M

ag
ni

tu
de

Phase

Period (days): 1.2430937

(g) 49512 - PL, BL & FTFIT - 2000-09

 19.5

 19.55

 19.6

 19.65

 19.7
 0.4  0.42  0.44  0.46  0.48  0.5  0.52  0.54  0.56  0.58  0.6

r’ 
M

ag
ni

tu
de

Phase

Period (days): 1.2430937

(h) 49512 - CPL & FTFIT - 2000-09

Figure 4.12: Planetary transit candidates 45134, 46691 and 49512.
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Figure 4.13: Eclipsing binary fits for star 49512.
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Table 4.5: Star, companion and lightcurve properties for INT-7789-TR-3 (star 49512) as obtained from the various fits detailed in Section 4.2.10. Column
4 is calibrated r′ magnitude. Mc and Rc are the companion mass and radius respectively. The ratio fc/f∗ is the flux ratio of the companion to the
primary star in the Sloan r′ waveband. The quantity d is the distance to the system.

Model t0 − 2451000.0 P m0 ∆m ∆t i M∗ R∗ Mc Rc fc/f∗ d χ2

(d) (d) (r′ mag) (mag) (h) (◦) (M⊙) (R⊙) (M⊙) (R⊙) (Sloan r′) (pc)
A 800.6201(7) 2.4867(116) 19.553 0.086 1.93 83.48(6) 0.701(5) 0.670(5) 0.661(30) 0.629(29) 0.669 2788(6) 725.88
B 800.6203(7) 1.2431(58) 19.553 0.070 1.72 87.1(1.2) 0.679(4) 0.649(4) 0.000 0.151(7) 0.000 1995(5) 729.99
C 800.6204(7) 1.2430(58) 19.553 0.070 1.68 88.8(1.5) 0.682(4) 0.651(4) 0.126(6) 0.149(6) 0.0019 2021(5) 731.73

A = Similar Size Stellar Companion. B = Planetary Companion. C = Small Stellar Companion.
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Applying the same analysis as for star 64804 in Section 4.2.7 to the single eclipse yields
a predicted period of 0.62 d for b = 0 that increases slowly with increasing values of
b. For b < 0.66, χ2

fold ≫ χ2
ecl and for b ≥ 0.66, χ2

fold oscillates between the states

χ2
fold ≫ χ2

ecl and χ2
fold = χ2

ecl. Hence we can be sure that b ≥ 0.66, which corresponds to

Rc/R∗ ≥ 0.137. In Figure 4.12(c) we plot χ2
ecl versus Rc/R∗ (dashed line) and χ2′

fold versus
Rc/R∗ (continuous line) where:

χ2′

fold =

{

χ2
fold if b < 0.66

χ2
ecl if b ≥ 0.66

(4.5)

The minimum value of χ2
ecl obtained is χ2

ecl = 806.6 corresponding to Rc/R∗ = 0.137, and
this is marked on Figure 4.12(c) as a horizontal shorter dashed line, along with the chi
squared values χ2

ecl = 806.6 + 1.0, χ2
ecl = 806.6 + 4.0 and χ2

ecl = 806.6 + 9.0 corresponding
to the 1, 2 and 3σ confidence levels.

One can see from Figure 4.12(c) that 0.137 ≤ Rc/R∗ ≤ 0.144 with a 1σ confidence.
This is equivalent to stating that Rc = 0.185+0.009

−0.000R⊙. Hence the conclusion at the 1σ
level is that this is a possible transiting planet in orbit around a 1.20M⊙ F star that merits
follow-up observations. Table 4.4 presents the solution corresponding to the minimum value
of χ2

ecl including the predicted period and inclination, and Figure 4.12(d) shows a plot of
this solution along with the lightcurve data for the night on which the eclipse occurs.

4.2.10 INT-7789-TR-3 (Star 49512)

Star 49512 exhibits two fully observed eclipses and one partially observed eclipse dur-
ing the 2000-09 run. The eclipses have a depth of 0.07 mag and duration 1.7 h with a
period of 1.24 d (Figures 4.12(e), 4.12(g) & 4.12(h)). The star has r′ ≈ 19.55 mag and
r′ − i′ ≈ 0.97 mag from which we derive a 0.68M⊙ primary star of spectral type K5V that
lies slightly in front of the cluster (d = 2.0kpc). A full transit fit to the 2000-09 lightcurve
data yields a best fit companion radius of 0.151±0.007R⊙ consistent with the radius of a
transiting planet (Figure 4.12(f)). This solution is reported in Table 4.4, and the χ2 of the
fit is 729.99.

However, there are two other models for star 49512 that should be considered to see
if they produce a better χ2 value for the fit to the lightcurve data. It is possible that
the companion is a smaller and less luminous star than the primary star that produces
a secondary eclipse which is not visible in the lightcurve folded at the ∼1.24 day period,
and it is also possible that the companion is a star of similar size and luminosity to the
primary star and that the system actually has an orbital period of ∼2.48 days. In order
to test these models for star 49512 we have developed an eclipsing binary model based on
the same assumptions as for the star and planet system presented in Section 4.2.1 except
that we assume that the companion is now luminous and massive, and that our theoretical
main sequence relationships adopted in Section 3.4.3 apply to the companion. The model
is represented mathematically by:

f4(t) = f0(1.0 − fc(t) − f∗(t)) Model 4

(4.6)
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The function f4(t) is the predicted stellar flux at time t, f0 is a constant flux value, fc(t)
is the fraction of the total stellar flux obscured by the companion at time t and f∗(t) is
the fraction of the total stellar flux obscured by the primary star at time t. The function
f4(t) is calculated in a numerical fashion by creating a grid for the observed stellar disks
and calculating the flux from each grid element taking into account the apparent position
of the companion at time t, the different surface brightnesses of each star and the effect of
linear limb darkening with u = 0.5.

The eclipsing binary model has five parameters to optimise: orbital period P , time of
mid-eclipse t0, orbital inclination i, companion to primary star radius ratio Rc/R∗ and a
constant magnitude m0. We fitted this model to the lightcurve of star 49512 by calculating
the χ2 for a grid in i and Rc/R∗, in the same way as for the transiting planet model. The
added subtlety is that for each value of Rc/R∗, we had to recalculate the distance d to the
system, the values of M∗ and R∗ for the primary star, and the mass of the companion Mc.
This was done by constructing a theoretical binary main sequence for the current value of
Rc/R∗ and then finding the distance d such that this model passes through the position
of star 49512 in the colour-magnitude domain. The initial value of P was either 1.24 d
or 2.48 d corresponding to the small or similar size stellar companion models respectively.
Table 4.5 reports the results of these fits including the results of the fit of the transiting
planet model for comparison. Figure 4.13 shows a chi squared contour map, a folded and
binned lightcurve with the best fit eclipsing binary model, an unbinned close-up of the
folded lightcurve around the primary eclipse along with the best fit model and another
unbinned close-up around the secondary eclipse along with the best fit model. The left
hand column of diagrams in Figure 4.13 applies to the case of the small stellar companion
and the right hand column of diagrams in Figure 4.13 applies to the case of the similar size
stellar companion.

Table 4.5 shows that the best model for star 49512 is the eclipsing binary model with a
similar size stellar companion since this model attains the smallest χ2 of 725.88. All three
models require exactly 5 parameters to be optimised and hence we calculate a likelihood
ratio of ∼7.8 for the eclipsing binary model with a similar size stellar companion compared
to the transiting planet model, and we calculate a likelihood ratio of ∼18.6 for the eclipsing
binary model with a similar size stellar companion compared to the eclipsing binary model
with a small stellar companion. Finally, we calculate a likelihood ratio of ∼2.4 for the tran-
siting planet model compared to the eclipsing binary model with a small stellar companion.
Hence our conclusion is that this system is most likely to be a grazing eclipsing binary
with period 2.49 d consisting of a K4V star primary and a K5V star secondary that lies
at d = 2.8kpc, slightly behind the cluster. However, further observations will be required
confirm this conclusion and categorically rule out the transiting planet model.

4.2.11 Finding Charts

In order to help facilitate follow-up observations of the eclipsing binaries and transit can-
didates presented in the preceeding sections, we supply finding charts in Figure 4.14. Each
stamp is a 27′′ × 27′′ section of the relevant reference frame where North is up and East is
to the right. Each eclipsing binary/transit candidate lies at the centre of its stamp and is
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marked by a cross.

4.3 Summary

In this chapter we have introduced our transit detection algorithm, based on a matched
filter algorithm, which was used to identify 2182 raw transit candidates from the lightcurves
of the ∼33000 stars in our sample. We have described the data quality tests that we used to
reject false transit candidates which left us with 24 remaining transit candidate lightcurves.
The theoretical transiting planet model has been presented, along with the procedure used
for modelling the lightcurves of the transit candidates.

We have been able to rule out the transiting planet model for 21 of the transit candidates
using various robust arguments. For 2 candidates, INT-7789-TR-1 and INT-7789-TR-3, we
have been unable to decide on their nature, although it seems most likely that they are
eclipsing binaries as well. We have presented one candidate, INT-7789-TR-2, exhibiting a
single eclipse for which we derive a radius of 1.81+0.09

−0.00RJ. Three candidates remain that
require follow-up observations in order to determine their nature. Finally we have plotted
finding charts in order to aid any follow-up observations of the eclipsing binaries and transit
candidates.
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(a) 711 (b) 791 (c) 1031 (d) 1262

(e) 5917 (f) 5974 (g) 6995 (h) 7628

(i) 7695 (j) 21790 (k) 22688 (l) 22738

(m) 23979 (n) 24512 (o) 45134 (p) 46271

(q) 46691 (r) 47171 (s) 49512 (t) 50313

(u) 61876 (v) 62983 (w) 64804 (x) 73852

Figure 4.14: Finding charts taken from the reference frames. North is up and East is to the right. The
stamps are of size 27′′ × 27′′. Each eclipsing binary/transit candidate lies at the centre of its stamp and is
marked by a cross.



5
Limits On The Hot Jupiter Fraction In

The Field Of NGC 7789

5.1 Introduction

In the previous Chapter we presented three transit candidates for which we could not
rule out the transiting planet model. Hence, at most we have detected 3 transiting hot
Jupiters, although our analysis of these candidates shows that this is very unlikely. Follow-
up observations will most likely show that our transit candidates are eclipsing binaries,
which means that our transit survey will have produced a null result. From a simple
signal-to-noise argument presented in Section 3.4.5, we expected to detect ∼5 transiting
hot Jupiters based on a typical radius of ∼1.4RJ and Solar neighbourhood frequency of
∼1% for Sun-like stars.

This analysis, however, has ignored/approximated many factors that may affect the
accuracy of our estimate of the number of hot Jupiters that we expected to detect. These
include:

1. Limb darkening effects which tend to make central eclipses deeper and grazing eclipses
shallower.

2. The effect of orbital inclination on the transit signature of an extra-solar planet.

3. The distribution of our photometric data in time and the individual error bars on
each measurement.

4. The effect of our modified transit detection algorithm on the S/N of a transit signal.

5. The minimum number of data points in-transit and out-of-transit required for a de-
tection.

6. The rate of detections of spurious transit signals due to noise and/or systematic errors
in the lightcurves (the false alarm rate).
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The expected number of hot Jupiter detections and false alarms depend on the set Y of
stars considered, the detection threshold S2

min, the extra-solar planet period P and the
extra-solar planet radius Rp. We ignored these functional dependencies in our estimate of
∼5 expected hot Jupiter detections by considering a fixed detection threshold (S2

min = 100),
period (P = 3.5 d) and planetary radius (Rp = 1.4RJ) for all stars in our sample. In order
to improve our estimate of the number of hot Jupiters that we expected to detect and in
order to estimate our false alarm rate, we have carried out Monte Carlo simulations on the
lightcurves in our data set.

5.2 Detection Probabilities And False Alarm Rates

Consider an extra-solar planet of radius Rp, orbital period P and orbital inclination i with
t0 as the time of central transit. Let the planet be in orbit around a star S of known mass
and radius that has an associated lightcurve. Then we may calculate the predicted transit
lightcurve of the planet (using the program transitcurve.pro - see Section 2.4.3) and add
this signal into the observed lightcurve of the star. Consequently we may calculate the
transit statistic S2

tra (Section 4.1) using the values of t0 and ∆t for each transit event, and
then evaluate the following detection function:

DS
(

S2
min, Nmin, Rp, P, i, t0

)

=

{

1 if S2
tra ≥ S2

min for at least Nmin predicted transits

0 otherwise

(5.1)
where S2

min is the transit statistic detection threshold. Using the same procedure as above,
but without actually adding the predicted transit lightcurve into the observed lightcurve of
the star, we may evaluate the false alarm function:

FS
(

S2
min, Nmin, Rp, P, i, t0

)

=

{

1 if S2
tra ≥ S2

min for at least Nmin predicted transits

0 otherwise

(5.2)
Since the transit statistic for the observed lightcurve with the injected transit is in general
greater than or equal to the transit statistic for the observed lightcurve without the injected
transit, it is clear that:

DS
(

S2
min, Nmin, Rp, P, i, t0

)

≥ FS
(

S2
min, Nmin, Rp, P, i, t0

)

(5.3)

The parameters t0 and i in the detection function DS are nuisance parameters since
they do not reveal any useful physical information about the extra-solar planet itself. In
order to remove these dimensions from the parameter space, we must multiply the detection
function DS by the corresponding joint probability distribution function (PDF) f(t0, i), and
then integrate over the appropriate ranges. The parameter t0 lies in the range 0 ≤ t0 ≤ P
and the parameter i lies in the range 0◦ ≤ i ≤ 90◦. Hence we have:

P
(

det |S, S2
min, Nmin, Rp, P

)

=

∫ i=90◦

i=0◦

∫ t0=P

t0=0
f(t0, i)DS

(

S2
min, Nmin, Rp, P, i, t0

)

dt0 di

(5.4)
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where P
(

det |S, S2
min, Nmin, Rp, P

)

is the detection probability for star S and f(t0, i) is
the joint PDF of t0 and i. We assume that the parameters t0 and i are independent and
therefore:

f(t0, i) = f(t0)f(i) (5.5)

We now assume that the time of central transit and the orbital inclination are random
(as in Section 2.4.1). This means that t0 is distributed uniformly bewteen 0 and P :

P(0 ≤ x ≤ t0) =
t0
P

∴

dP

dt0
=

1

P

∴ f(t0) =
1

P
for 0 ≤ t0 ≤ P (5.6)

We may also use Equation [6] in Appendix A:

P(0 ≤ x ≤ i) = 1 − cos i

∴

dP

di
= sin i

∴ f(i) = sin i for 0◦ ≤ i ≤ 90◦ (5.7)

Substitute Equations 5.6 and 5.7 into Equation 5.5:

f(t0, i) =
sin i

P
(5.8)

Now substitute Equation 5.8 into Equation 5.4:

P
(

det |S, S2
min, Nmin, Rp, P

)

=

∫ i=90◦

i=0◦

∫ t0=P

t0=0

(

sin i

P

)

DS
(

S2
min, Nmin, Rp, P, i, t0

)

dt0 di

(5.9)
Using a parallel argument, we obtain an expression for the false alarm probability
P
(

fal |S, S2
min, Nmin, Rp, P

)

as:

P
(

fal |S, S2
min, Nmin, Rp, P

)

=

∫ i=90◦

i=0◦

∫ t0=P

t0=0

(

sin i

P

)

FS
(

S2
min, Nmin, Rp, P, i, t0

)

dt0 di

(5.10)

5.3 Monte Carlo Simulations

We decided to take the Monte Carlo approach to evaluating the detection probabilities and
false alarm rates, rather than attempting to numerically integrate Equations 5.9 and 5.10.
In general, a Monte Carlo simulation attempts to estimate the required probability of an
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event by selecting a large random sample from the parameter space as governed by the
underlying PDF, and then calculating the fraction of the sample that satisfy the event
criteria. The larger the sample, the more accurate the calculated probability. However,
the size of the sample that may be selected and analysed is usually limited by available
computing resources.

For each star S, we used the Monte Carlo method to calculate P
(

det |S, S2
min, Nmin, Rp, P

)

and P
(

fal |S, S2
min, Nmin, Rp, P

)

for a grid in S2
min, Nmin, Rp and P using the lightcurve

data from the 2000-09 run. We chose to use a geometric sequence in S2
min from S2

min = 5.6
to S2

min = 699 with geometric factor 1.05. We chose Nmin ∈ {1, 2, 3} and Rp = 1.40RJ.

The grid for P should be fine enough that the difference in period ∆ P = Pi+1 − Pi

between two consecutive grid points Pi and Pi+1 (where Pi+1 > Pi) is such that the differ-
ence in the number of cycles spanning the duration of the lightcurve is less than or equal
to a fraction ft of the transit duration (in cycle units). Let us denote the duration of the
lightcurve by T and the transit duration by ∆t. Expressing this condition in a mathematical
form yields:

T

Pi
− T

Pi+1
≤ ft∆t

Pi+1
(5.11)

Rearranging Equation 5.11 we get:

Pi+1

Pi
≤ 1 +

ft∆t

T
(5.12)

From Equation 5.12 it is clear that the grid in P should be a geometric sequence with
geometric factor less than or equal to 1 + (ft∆t/T ). We adopt ft = 0.5 in this analysis.
For the 2000-09 run we have T = 10.4 d and we take ∆t ≈ 2 h for a typical transit duration
which yields 1 + (ft∆t/T ) ≈ 1.004. Since we are interested in hot Jupiters, we used a grid
in P as a geometric sequence from P = 1 d to P = 10 d with the geometric factor 1.004,
which leads to 576 period grid points.

In our Monte Carlo simulations we carried out the following steps:

1. For each star S, planet radius Rp and orbital period P we carried out steps 2-5.

2. We selected a set X of NMC = 1000 planets of radius Rp with t0 and i drawn randomly
for each planet from the PDFs in Equations 5.6 and 5.7 respectively. The value of the
orbital period Pcurr for the current planet was drawn from a uniform distribution on
the interval P/

√
1.004 ≤ Pcurr ≤ P

√
1.004 in order to account for the planets which

have a transit duration shorter than 2 h.

3. We calculated DS
(

S2
min, Nmin, Rp, P, i, t0

)

for each planet, S2
min and Nmin. We then

obtained an estimate for P
(

det |S, S2
min, Nmin, Rp, P

)

from:

P
(

det |S, S2
min, Nmin, Rp, P

)

≈ 1

NMC

∑

X

DS
(

S2
min, Nmin, Rp, P, i, t0

)

(5.13)
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4. We also calculated FS
(

S2
min, Nmin, Rp, P, i, t0

)

for each planet, S2
min and Nmin. We

then obtained an estimate for P
(

fal |S, S2
min, Nmin, Rp, P

)

from:

P
(

fal |S, S2
min, Nmin, Rp, P

)

≈ 1

NMC

∑

X

FS
(

S2
min, Nmin, Rp, P, i, t0

)

(5.14)

5. Let us denote the uncertainty in P
(

det |S, S2
min, Nmin, Rp, P

)

and

P
(

fal |S, S2
min, Nmin, Rp, P

)

as σPdet

(

S, S2
min, Nmin, Rp, P

)

and

σPfal

(

S, S2
min, Nmin, Rp, P

)

respectively. Then, assuming Poisson statistics, we have:

σPdet

(

S, S2
min, Nmin, Rp, P

)

=
1

NMC

√

∑

X

DS

(

S2
min, Nmin, Rp, P, i, t0

)

(5.15)

σPfal

(

S, S2
min, Nmin, Rp, P

)

=
1

NMC

√

∑

X

FS

(

S2
min, Nmin, Rp, P, i, t0

)

(5.16)

In Section 5.1, we noted the factors which we ignored/approximated in our previous
estimate of the number of hot Jupiters that we expected to detect. The Monte Carlo
simulations take all of these factors into account when calculating the detection and false
alarm probabilities. By explicitly using the function DS

(

S2
min, Nmin, Rp, P, i, t0

)

, we have
immediately included the effects of points 1-5 in Section 5.1 and by using the corresponding
false alarm function FS

(

S2
min, Nmin, Rp, P, i, t0

)

, we have taken care of point 6.

In Figure 5.1, we plot the detection probability and false alarm probability as functions
of the transit statistic detection threshold (top) and period (bottom) for star 61377 during
the 2000-09 run. This r′ ≈ 18.20 mag G star has a mass, radius and distance of 0.96M⊙,
0.96R⊙ and 3152pc respectively. The detection probability decreases strongly as the de-
tection threshold increases, as does the false alarm probability (Figure 5.1 top). For this
particular star, it can be seen that false alarms are very unlikely even at very low detection
thresholds. The upper and lower horizontal continuous lines correspond to Ptra ≈ 0.119
as calculated from Equation 2.9 and Pann ≈ 0.088 as calculated from Equation 2.10 re-
spectively. These probabilities are independent of the detection threshold, and serve to
highlight how the fraction of transiting planets that we are able to detect varies with de-
tection threshold. For example, for S2

min = 100 and Nmin = 1, we recover ∼30% of the
injected planets that transit star 61377.

In Figure 5.1 (bottom) one can see that the detection probability is highly dependent
on the orbital period. For Nmin = 1, orbital periods close to integer values tend to have
lower detection probabilities since such periods are resonant with the observational gaps
during the daytime. Conversely, orbital periods close to fractional values tend to have
higher detection probabilities since such periods cover a greater range of orbital phases. For
example, periods close to ∼3.0 d have a detection probability of ∼0.02 whereas periods close
to ∼3.3 d have a detection probability of ∼0.06 for this particular star. Figure 5.1 also shows
that as you increase the number of recovered transits required for a detection, the detection
probability decreases rapidly. The upper and lower continuous curves correspond to Ptra
as calculated from Equation 2.9 and Pann as calculated from Equation 2.10 respectively.
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Figure 5.1: Detection probability as a function of S2

min for star 61377 during the 2000-09 run with
P = 3.338 d and Rp = 1.40RJ (Top) and as a function of P with S2

min = 100 and Rp = 1.40RJ
(Bottom). The continuous line corresponds to Nmin = 1, the dashed line corresponds to Nmin = 2 and the
shorter dashed line corresponds to Nmin = 3 in both diagrams. The false alarm probability as a function
of S2

min for the same star and planet with Nmin = 1 is shown by the dotted line in the top diagram. The
false alarm probability is approximately zero for all P and Nmin in the bottom diagram. Star 61377 has 612
data points over 11 nights in its 2000-09 lightcurve with an RMS of ∼0.010 mag. It has a mass, radius and
distance of 0.96M⊙, 0.96R⊙ and 3152pc respectively. In the top diagram, the upper and lower horizontal
continuous lines correspond to Ptra as calculated from Equation 2.9 and Pann as calculated from Equation
2.10 respectively. In the bottom diagram, the upper and lower smooth continuous curves correspond to Ptra
and Pann respectively.
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From these equations, and Kepler’s third law (Equation 1.8), it is clear that Ptra ∝ P−2/3

and Pann ∝ P−2/3.

The calculations of the detection probabilities and false alarm rates were carried out
using the CONDOR1 workload management system. Each lightcurve requires ∼30 minutes
of computing time on a 1.0Ghz machine. That is a total of ∼1.9 CPU-years required to
analyse our ∼33000 lightcurves. One could nearly write a thesis in that time! CONDOR
distributes the workload in batches to computers linked to the system, and when an indi-
vidual computer is idle, it executes the current batch. We sent each lightcurve as a batch
job to the CONDOR pools at St Andrews (47 CPUs) and the Instituto de Astrofisica de
Canarias (91 CPUs). The calculations were finished in just under three weeks since we were
limited to 30 IDL licenses at St Andrews and 20 IDL licenses at the IAC.

5.4 Number Of Expected Transiting Planets

Assuming that each star has one planet of radius Rp and period P , then the number of
expected transiting planets Ndet

(

Y, S2
min, Nmin, Rp, P

)

as a function of star type Y , S2
min,

Nmin, Rp and P is simply the sum of the detection probabilities for all stars of the required
type:

Ndet
(

Y, S2
min, Nmin, Rp, P

)

=
∑

S∈Y

P
(

det |S, S2
min, Nmin, Rp, P

)

(5.17)

Similarly, the number of expected false alarms Nfal
(

Y, S2
min, Nmin, Rp, P

)

is given by:

Nfal
(

Y, S2
min, Nmin, Rp, P

)

=
∑

S∈Y

P
(

fal |S, S2
min, Nmin, Rp, P

)

(5.18)

The uncertainty in Ndet
(

Y, S2
min, Nmin, Rp, P

)

and Nfal
(

Y, S2
min, Nmin, Rp, P

)

, denoted

by σNdet

(

Y, S2
min, Nmin, Rp, P

)

and σNfal

(

Y, S2
min, Nmin, Rp, P

)

respectively, may be de-
rived from Equations 5.13 through 5.18 as:

σNdet

(

Y, S2
min, Nmin, Rp, P

)

=

√

1

NMC
Ndet

(

Y, S2
min, Nmin, Rp, P

)

(5.19)

σNfal

(

Y, S2
min, Nmin, Rp, P

)

=

√

1

NMC
Nfal

(

Y, S2
min, Nmin, Rp, P

)

(5.20)

We are interested in the number of expected transiting planets (and false alarms) for
stars of different masses or, equivalently, spectral types. To facilitate this analysis we
consider 5 different sets of stars. The first set is the set of all stars with a lightcurve from
the 2000-09 run, and a derived mass, radius and distance. This set includes a total of 32027
stars. The other sets are mutually exclusive subsets of this set consisting of late F stars, G
stars, K stars and M stars respectively. Table 5.1 shows the number of stars in each set and
the mass/spectral type ranges to which they correspond. The mass ranges for the various
spectral types are taken from Lang (1992).

1http://www.cs.wisc.edu/condor
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Figure 5.2: Number of expected transiting planets (continuous curves) and false alarms (dashed curves)
for all stars as functions of S2

min with Rp = 1.40RJ. The top diagram corresponds to P = 3.338 d and
the bottom diagram corresponds to P = 3.008 d. In both diagrams the continuous curves represent
Ndet

`

Y, S2

min, Nmin, Rp, P
´

for Nmin = 1 (upper curve), Nmin = 2 (middle curve) and Nmin = 3 (lower
curve). Similarly, the dashed curves represent Nfal

`

Y,S2

min, Nmin, Rp, P
´

for Nmin = 1 (upper curve),
Nmin = 2 (middle curve) and Nmin = 3 (lower curve).
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Figure 5.3: Number of expected transiting planets (Top) and the number of expected false alarms (Bottom)
for all stars as functions of P for Rp = 1.40RJ and S2

min = 100. In both diagrams, the continuous curve
corresponds to Nmin = 1, the dashed curve to Nmin = 2 and the shorter dashed curve to Nmin = 3.



5.5 Number Of Expected Transiting Planets 98

Table 5.1: The different subsets of stars used when calculating the number of expected transiting planets
and false alarms.

Y No. Of Stars Mass Range

All Stars 32027 0.08M⊙ ≤ M∗ ≤ 1.40M⊙

Late F Stars 3129 1.05M⊙ < M∗ ≤ 1.40M⊙

G Stars 7423 0.80M⊙ < M∗ ≤ 1.05M⊙

K Stars 15381 0.50M⊙ < M∗ ≤ 0.80M⊙

M Stars 6094 0.08M⊙ ≤ M∗ ≤ 0.50M⊙

In Figure 5.2, we plot the number of expected transiting planets and false alarms
for all stars as functions of the transit statistic detection threshold for P = 3.338 d
(top) and for P = 3.008 d (bottom). In both plots the continuous curves represent
Ndet

(

Y, S2
min, Nmin, Rp, P

)

for Nmin = 1 (upper curve), Nmin = 2 (middle curve) and

Nmin = 3 (lower curve). Similarly, the dashed curves represent Nfal
(

Y, S2
min, Nmin, Rp, P

)

for Nmin = 1 (upper curve), Nmin = 2 (middle curve) and Nmin = 3 (lower curve). It
is interesting to note how the small change in period from P ≈ 3.0 d to P ≈ 3.3 d can
seriously affect the number of expected transiting planets (and false alarms) in different
ways for different values of Nmin. For instance, when Nmin = 1, we have:

Ndet
(

Y, S2
min, Nmin, Rp, 3.3 d

)

> Ndet
(

Y, S2
min, Nmin, Rp, 3.0 d

)

and:
Nfal

(

Y, S2
min, Nmin, Rp, 3.3 d

)

≈ Nfal
(

Y, S2
min, Nmin, Rp, 3.0 d

)

However, when Nmin = 2, we have:

Ndet
(

Y, S2
min, Nmin, Rp, 3.3 d

)

< Ndet
(

Y, S2
min, Nmin, Rp, 3.0 d

)

and:
Nfal

(

Y, S2
min, Nmin, Rp, 3.3 d

)

< Nfal
(

Y, S2
min, Nmin, Rp, 3.0 d

)

This is easily explained by the fact that the phase coverage of the observations with
Nmin = 1 is better for P = 3.3 d than for P = 3.0 d and conversely, the phase cov-
erage of the observations with Nmin = 2 is better for P = 3.0 d than for P = 3.3 d.

One may also see from Figure 5.2 that Nfal
(

Y, S2
min, Nmin, Rp, P

)

≈ 0.3 < 1 for both
periods at our chosen transit statistic detection threshold S2

min = 100 and Nmin = 1 (see
Section 4.1). This is important because it means that our survey is unlikely to yield any
transit candidates that we conclude are transiting planets when in fact they are not and
thus our choice of such a high detection threshold is justified.

In Figure 5.3, we plot the number of expected transiting planets (top) and the number
of expected false alarms (bottom) for all stars as functions of the period with Rp = 1.40RJ
and S2

min = 100. Again note the strong dependence of these quantities on the period.
The bottom diagram clearly shows that, by increasing Nmin from 1 to 2, the number of
expected false alarms is effectively reduced to zero for all P . However, introducing this
extra constraint for a transit detection more than halves the expected yield of planets from
the survey (Figure 5.3 top). By choosing Nmin = 1 in Section 4.1, we have opted to risk
the possibility of false alarms in exchange for more transit detections.
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5.5 Number Of Expected Transiting Hot Jupiters

As we have seen in Section 5.4, the number of expected transiting planets is highly depen-
dent on the orbital period. A slight change in the period of the planet considered can change
Ndet

(

Y, S2
min, Nmin, Rp, P

)

by up to a factor of 2 (Figure 5.3 top). Instead of considering
a specific period, we may consider a range of periods that fit with the type of planet that
we are interested in, making some assumption about the underlying PDF.

For hot Jupiters we have a PDF for the period f(P ) such that f(P ) ∝ P−1 as revealed
by the radial velocity surveys (see Section 1.2.3). We consider three sets of planets defined
by their assigned period ranges. These sets are the very hot Jupiters with 1d ≤ P ≤ 3d,
the shorter period hot Jupiters with 3d ≤ P ≤ 5d and the hot Jupiters with 1d ≤ P ≤ 10d.
The period ranges (and planet types) are arbitrary but consistent with the known short
period extra-solar planets.

The period PDF f(P ) for a set of planets with periods in the range P1 ≤ P ≤ PM

(where M ∈ N) such that f(P ) ∝ P−1 is given by:

f(P ) =
1

P (ln PM − ln P1)
for P1 ≤ P ≤ PM (5.21)

The detection probability P
(

det |S, S2
min, Nmin, Rp, P1, PM

)

for the set of planets with the
period PDF from Equation 5.21 is then found by integrating the product of f(P ) and
P
(

det |S, S2
min, Nmin, Rp, P

)

over the period range P1 ≤ P ≤ PM :

P
(

det | S, S2

min, Nmin, Rp, P1, PM

)

=

∫ PM

P1

(

1

P (ln PM − lnP1)

)

P
(

det | S, S2

min, Nmin, Rp, P
)

dP

(5.22)
Introducing the change of variable Z = ln P into Equation 5.22 yields:

P
(

det | S, S2

min, Nmin, Rp, P1, PM

)

=

(

1

lnPM − lnP1

)∫

lnPM

lnP1

P
(

det | S, S2

min, Nmin, Rp, P
)

dZ

(5.23)
Making a discrete approximation to the integral in Equation 5.23 gives:

P
(

det | S, S2

min, Nmin, Rp, P1, PM

)

≈
(

1

lnPM − lnP1

)

∑

P∈{P1,P2,...,PM}

P
(

det | S, S2

min, Nmin, Rp, P
)

dZi

(5.24)

In our Monte Carlo simulations we chose to calculate P
(

det |S, S2
min, Nmin, Rp, P

)

for a
grid in P consisting of a geometric sequence from P1 = 1.0 d to PM = 10.0 d with geometric
factor k = 1.004 resulting in M = 576 period grid points. Denoting a general period grid
point by P = Pi for i ∈ {1, 2, . . . ,M}, we have:

Pi+1 = kPi

∴ ln Pi+1 = ln Pi + ln k (5.25)
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Hence, for this period grid, dZi = ln k for all i ∈ {1, 2, . . . ,M}. Using this fact in Equa-
tion 5.24 yields:

P
(

det | S, S2

min, Nmin, Rp, P1, PM

)

≈
(

ln k

lnPM − lnP1

)

∑

P∈{P1,P2,...,PM}

P
(

det | S, S2

min, Nmin, Rp, P
)

(5.26)
The uncertainty in P

(

det |S, S2
min, Nmin, Rp, P1, PM

)

, denoted by

σPdet

(

S, S2
min, Nmin, Rp, P1, PM

)

, may be derived from Equations 5.13, 5.15 and 5.26 as:

σPdet

(

S, S2

min, Nmin, Rp, P1, PM

)

=

√

(

ln k

NMC(lnPM − lnP1)

)

P
(

det | S, S2

min, Nmin, Rp, P1, PM

)

(5.27)

Assuming that each star has one planet of radius Rp and period P distributed with
PDF f(P ) from Equation 5.21 in the range P1 ≤ P ≤ PM , then the number of expected
planets Ndet

(

Y, S2
min, Nmin, Rp, P1, PM

)

as a function of star type Y , S2
min, Nmin, Rp, P1

and PM is simply the sum of the detection probabilities for all stars of the required type:

Ndet
(

Y, S2
min, Nmin, Rp, P1, PM

)

=
∑

S∈Y

P
(

det |S, S2
min, Nmin, Rp, P1, PM

)

(5.28)

The uncertainty in Ndet
(

Y, S2
min, Nmin, Rp, P1, PM

)

, denoted by

σNdet

(

Y, S2
min, Nmin, Rp, P1, PM

)

, may be derived from Equations 5.27 and 5.28 as:

σNdet

(

Y, S2

min, Nmin, Rp, P1, PM

)

=

√

(

ln k

NMC(ln PM − lnP1)

)

Ndet

(

Y, S2

min, Nmin, Rp, P1, PM

)

(5.29)

Using a similar set of arguments to those presented above, we may derive the corre-
sponding set of equations relating to the false alarm probability, the number of expected
false alarms and the associated uncertainties:

P
(

fal | S, S2

min, Nmin, Rp, P1, PM

)

≈
(

ln k

lnPM − lnP1

)

∑

P∈{P1,P2,...,PM}

P
(

fal | S, S2

min, Nmin, Rp, P
)

(5.30)

σPfal

(

S, S2

min, Nmin, Rp, P1, PM

)

=

√

(

ln k

NMC(lnPM − lnP1)

)

P
(

fal | S, S2

min, Nmin, Rp, P1, PM

)

(5.31)

Nfal
(

Y, S2
min, Nmin, Rp, P1, PM

)

=
∑

S∈Y

P
(

fal |S, S2
min, Nmin, Rp, P1, PM

)

(5.32)

σNfal

(

Y, S2

min, Nmin, Rp, P1, PM

)

=

√

(

ln k

NMC(ln PM − lnP1)

)

Nfal

(

Y, S2

min, Nmin, Rp, P1, PM

)

(5.33)
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Figure 5.4: Number of expected transiting planets (continuous curves) and false alarms (dashed curves) for
all stars as functions of S2

min with Nmin = 1 and Rp = 1.40RJ. The period ranges that correspond to each
curve are marked on the diagram.
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(a) The very hot Jupiters with 1d ≤ P ≤ 3d.
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(b) The hot Jupiters with 1d ≤ P ≤ 10d.
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(c) The hot Jupiters with 3d ≤ P ≤ 5d.

Figure 5.5: Number of expected transiting planets as a function of S2

min with Nmin = 1 and Rp = 1.40RJ.
The star types that correspond to each curve are marked on each diagram.
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Table 5.2: Results of the Monte Carlo simulations for Rp = 1.40RJ and S2

min = 100. The number in brackets indicates the uncertainty on the last
decimal place. The last two columns indicate the derived upper limits on fp at the significance level α for Nmin = 1.

Y No. Of P Ndet Nfal Ndet Nfal fp fp
Stars (days) with Nmin = 1 with Nmin = 1 with Nmin = 2 with Nmin = 2 at α = 0.01 at α = 0.05

All Stars 32027 3.00783 168.7(4) 0.325(18) 86.4(3) 0.011(3) 2.7% 1.8%
All Stars 32027 3.33788 219.4(5) 0.343(19) 36.9(2) 0.000 2.1% 1.4%
All Stars 32027 1d ≤ P ≤ 3d 436.49(4) 0.656(2) 199.27(3) 0.018(1) 1.0% 0.69%
All Stars 32027 3d ≤ P ≤ 5d 175.30(4) 0.257(1) 34.48(2) 0.003(1) 2.6% 1.7%
All Stars 32027 1d ≤ P ≤ 10d 271.24(2) 0.407(1) 105.13(1) 0.009(1) 1.7% 1.1%

Late F Stars 3129 3.00783 23.3(2) 0.092(10) 8.3(1) 0.005(2) 20% 13%
Late F Stars 3129 3.33788 25.3(2) 0.093(10) 3.8(1) 0.000 18% 12%
Late F Stars 3129 1d ≤ P ≤ 3d 56.17(1) 0.187(1) 17.58(1) 0.004(1) 8.2% 5.3%
Late F Stars 3129 3d ≤ P ≤ 5d 21.18(1) 0.073(1) 2.89(1) 0.001(1) 22% 14%
Late F Stars 3129 1d ≤ P ≤ 10d 34.21(1) 0.113(1) 9.22(1) 0.002(1) 13% 8.7%

G Stars 7423 3.00783 83.2(3) 0.133(12) 45.6(2) 0.004(2) 5.5% 3.6%
G Stars 7423 3.33788 111.4(3) 0.144(12) 19.2(1) 0.000 4.1% 2.7%
G Stars 7423 1d ≤ P ≤ 3d 219.82(3) 0.261(1) 106.85(2) 0.007(1) 2.1% 1.4%
G Stars 7423 3d ≤ P ≤ 5d 88.27(3) 0.110(1) 18.52(1) 0.001(1) 5.2% 3.4%
G Stars 7423 1d ≤ P ≤ 10d 136.63(2) 0.166(1) 56.37(1) 0.004(1) 3.4% 2.2%
K Stars 15381 3.00783 52.8(2) 0.094(10) 27.4(2) 0.002(1) 8.7% 6.7%
K Stars 15381 3.33788 69.9(3) 0.104(10) 11.9(1) 0.000 6.6% 4.3%
K Stars 15381 1d ≤ P ≤ 3d 136.13(2) 0.200(1) 63.11(2) 0.007(1) 3.4% 2.2%
K Stars 15381 3d ≤ P ≤ 5d 55.76(2) 0.073(1) 11.07(1) 0.001(1) 8.2% 5.4%
K Stars 15381 1d ≤ P ≤ 10d 85.12(1) 0.122(1) 33.35(1) 0.004(1) 5.4% 3.5%
M Stars 6094 3.00783 9.5(1) 0.001(1) 5.0(1) 0.000 48% 31%
M Stars 6094 3.33788 12.9(1) 0.002(1) 2.0(1) 0.000 36% 23%
M Stars 6094 1d ≤ P ≤ 3d 24.37(1) 0.008(1) 11.72(1) 0.000 19% 12%
M Stars 6094 3d ≤ P ≤ 5d 10.08(1) 0.002(1) 2.00(1) 0.000 46% 30%
M Stars 6094 1d ≤ P ≤ 10d 15.29(1) 0.005(1) 6.18(1) 0.000 30% 19%
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In Table 5.2 we present the results of the Monte Carlo simulations for various val-
ues/ranges of the relevant parameters. The table details the number of expected transiting
planets and false alarms for various pertinent sets of stars, period ranges, and values of
Nmin as calculated for Rp = 1.40RJ and S2

min = 100.

In Figure 5.4 we plot the number of expected transiting planets (continuous curves)
and false alarms (dashed curves) for all stars as functions of the transit statistic detection
threshold. The period ranges that correspond to each curve are marked on the diagram.
One can see that we expected to detect ∼436 1d to 3d very hot Jupiters, ∼175 3d to 5d
hot Jupiters and ∼271 1d to 10d hot Jupiters at a detection threshold of S2

min = 100 with
Nmin = 1 (Table 5.2) based on the assumption that each star has a single such planet of
the specified type.

However, in reality, only a fraction fp of the stars considered will harbour a planet of
the specified type, and hence we must correct our calculations of the number of expected
transiting planets by this factor. We refer to fp as the planet fraction. Since fp is an
unknown quantity that we would like to estimate, we may use the fact that our transit
survey has most likely produced a null result (although this is still to be confirmed) and
place a significant upper limit on fp. First of all we make the assumption that the number
X of transiting planet detections has a Poisson distribution with expected value E(X) given
by:

E(X) = fpNdet (5.34)

The Poission distribution is defined by:

P(X = x) =
(E(X))x

x!
e−E(X) for x ∈ N0 (5.35)

For a null result, x = 0. Using this fact and substituting Equation 5.34 into Equation 5.35
we get:

P(X = 0) = e−fpNdet (5.36)

In order to obtain an upper limit on fp at the significance level α we require:

P(X = 0) ≤ α (5.37)

Using Equation 5.36 in Equation 5.37 we get:

e−fpNdet ≤ α (5.38)

∴ fp ≤ − ln α

Ndet
(5.39)

The values of fp that we derive in this manner for α = 0.01 and α = 0.05 are shown in the
final two columns of Table 5.2.

The results from Table 5.2 and Figure 5.4 indicate that, for all the stars in our sample
and at a significance level of 1%, we may place an upper limit of 1.0% on the 1d to 3d very
hot Jupiter fraction, an upper limit of 2.6% on the 3d to 5d hot Jupiter fraction and an
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Figure 5.6: The upper limit on fp against star type for the 1d to 3d very hot Jupiters (continuous line),
the 3d to 5d hot Jupiters (dashed line) and the 1d to 10d hot Jupiters (shorter dashed line). The dotted
line shows the estimate of the 3d to 5d hot Jupiter fraction for Solar neigbourhood stars from Butler et al.
(2000).

upper limit of 1.7% on the 1d to 10d hot Jupiter fraction, based on the assumption that
such planets have a typical radius of ∼ 1.40RJ.

Figure 5.5 shows the number of expected transiting planets as a function of the transit
statistic detection threshold for the different period ranges and stellar types. Figure 5.5(a)
corresponds to the period range 1d ≤ P ≤ 3d, Figure 5.5(b) corresponds to the period
range 1d ≤ P ≤ 10d and Figure 5.5(c) corresponds to the period range 3d ≤ P ≤ 5d.
Each curve corresponds to a different star type as defined in Table 5.1. For our survey with
S2

min = 100 and Nmin = 1, the best limits that we are able to place on the planet fraction
are for the G stars in our sample. For these stars, at a significance level of 1%, we constrain
fp ≤ 2.1% for the 1d to 3d very hot Jupiters, fp ≤ 5.2% for the 3d to 5d hot Jupiters and
fp ≤ 3.4% for the 1d to 10d hot Jupiters.
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5.6 Discussion

We may now attempt to answer the question posed in Section 1.2.4, “What fraction of
Sun-like stars have planets, and how does it depend on the host star properties?”. Instead
of providing an estimate of the planet fraction as a function of planet type and star type,
we have managed to derive relatively stringent upper limits on the abundance of planets
for the field of NGC 7789. Figure 5.6 shows a plot of the upper limit on the planet fraction
fp at a significance level of 1% as a function of star type for the 1d to 3d very hot Jupiters
(continuous line), the 3d to 5d hot Jupiters (dashed line) and the 1d to 10d hot Jupiters
(shorter dashed line). We also show the estimate by Butler et al. (2000) that ∼1% of
nearby Sun-like stars (late F and G dwarfs) host a 3d to 5d hot Jupiter (dotted line), as
derived from radial velocity observations.

It is interesting to note that although the K stars are the most numerous in our star
sample (15381 stars), it is the 7423 G stars that produce the largest number of expected
transiting planets, and therefore the strictest limits on fp. This is due to the fact that the G
stars are generally brighter than the K stars in our sample, and therefore the corresponding
gain in accuracy of the photometric measurements outweighs the smaller number of stars
for which we can search for transits and the smaller transit signal for a given planetary
radius.

We may compare our results directly with those of Butler et al. (2000) by considering
the late F and G stars in our sample and the corresponding number of expected transiting
planets for the 3d to 5d hot Jupiters. We expected to detect ∼21 such planets around the
late F stars in our sample, and ∼88 such planets around the G stars in our sample, a total
of ∼109 expected 3d to 5d hot Jupiters. This places an upper limit on fp of ∼4.2% at the
1% significance level for these types of star and planet. This is consistent with the value
derived by Butler et al. (2000) of fp ≈ 1% and demonstrates with confidence that the hot
Jupiter fraction for Sun-like stars in this field may not be more than a factor of ∼4 times
greater than that for the Solar neighbourhood. In our Monte Carlo simulations we have
only considered the lightcurve data from the 2000-09 run. By including the lightcurve data
from the 1999-07 run in any future simulations, where we also looked for transits, we will
be able to place better limits on the hot Jupiter fraction in this field.

Our previous estimate of ∼5 transiting hot Jupiters from Section 3.4.5, based on fp = 1.0%,
is clearly an over estimate. The Monte Carlo simulations indicate that for fp = 1.0% we
should have expected to detect ∼2 3d to 5d hot Jupiters from all the stars in our sample
(Table 5.2). The previous estimate fails in that it does not take into account any of the
factors mentioned in Section 5.1 that affect the sensitivity of a transit survey. We note
that by using the actual lightcurves of the stars in our sample we account exactly for the
distribution of our observations in time, but introduce some extra false alarms from the
existence of variable star lightcurves in the sample. This means that we tend to slightly over
estimate the false alarm rate which in turn leads us to choose a slightly higher detection
threshold than is necessary.

We conclude that our transit survey from the 2000-09 run alone has just about reached
the sensitivity required to detect a few hot Jupiters if the abundance of such planets is
similar to that of the Solar neighbourhood.
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5.7 Summary

This chapter has been used to present the ideas of detection probability and false alarm
probability for photometric observations of a star with an extra-solar planet. For each
star in our sample we have used Monte Carlo simulations to evaluate these probabilities
for a grid in planet period, planet radius, detection threshold and the minimum number
of recovered transits required for a detection. Consequently we have derived an accurate
estimate for the number of expected transiting planets and false alarms from our transit
survey as a function of star and planet type. This has allowed us to place corresponding
limits at the significance level of 1% on the hot Jupiter fraction for the different types of
stars in this field under the assumption that our survey has produced a null result.



6
Conclusions

In the search for our transit candidates we have developed an accurate, efficient and fast
photometry pipeline employing the technique of difference image analysis. Raw data from
the telescope are processed by the pipeline with minimal user input in order to directly pro-
duce lightcurves and colour magnitude diagrams. This is especially important considering
the high quantity of data that may arise from a transit survey.

Our analysis of the colour magnitude diagrams by including the treatment of extinction
for the open cluster NGC 7789 has allowed us to assign a model-dependent mass, radius
and distance to each star. Such information is vital in the subsequent analysis of the
transit candidates since it allows a direct estimate of the companion radius. We detected
24 transit candidates which warranted a detailed analysis of their lightcurves and we were
able to determine periods for 14 of these candidates. Of the 10 candidates without periods,
we could rule out the transiting planet model for 7 of them by determining the minimum
companion radius and for another one by predicting the orbital period. For INT-7789-TR-1,
it was only at the 1σ level that we could rule out the transiting planet model based on the
shape of the best eclipse. For INT-7789-TR-2 we found a companion radius of 0.185+0.009

−0.000R⊙

(1.81+0.09
−0.00RJ) based on the analysis of the best eclipse. Follow-up observations (see below)

will be required for both of these candidates in order confirm that INT-7789-TR-1 is an
eclipsing binary and in order to determine the nature of INT-7789-TR-2.

For the 14 transit candidates with well determined periods, we could rule out the transit-
ing planet model for 4 of them from the detection of previously disguised secondary eclipses,
and for 3 of them from the observation that the out-of-eclipse lightcurve data exhibit ellip-
soidal variations and heating effects. One of the candidates is possibly a new cataclysmic
variable with a long period (10.8 h) which could be a cluster member, worthy of follow-up
observations in its own right. All of the 8 above mentioned candidates plus another 5 may
be ruled out as having planetary companions by considering that the companion radius
obtained from the full transit fit is greater than 0.2R⊙. For INT-7789-TR-3, none of the
above arguments may be used to rule out the transiting planet model. However, on appli-
cation of an eclipsing binary model to the lightcurve we find that the model consisting a
pair of grazing K dwarf stars is ∼7.8 times more likely than the transiting planet model.
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This is by no means a definitive conclusion that INT-7789-TR-3 is an eclipsing binary since
there is a non-negligible probability that the transiting planet model is still valid. Follow-up
observations will be required to confirm that INT-7789-TR-3 is the type of eclipsing binary
that we predict in this thesis.

Future photometric observations of the three transit candidates for which we could not
rule out the transiting planet model with confidence should consist of time series observa-
tions in two different filters. Eclipsing binary status may be confirmed by the observation of
different eclipse depths in different filters since a planetary transit is an achromatic event.
INT-7789-TR-1 and INT-7789-TR-2 also require the observations of multiple eclipses in
order to determine their period and whether they exhibit secondary eclipses or not. If these
follow-up photometric observations still allow the possibility that the transiting planet
model is valid, then radial velocity observations may be used to place an upper limit on the
mass of the orbiting companion, hopefully low enough to rule out a stellar or brown dwarf
companion. The fact that these candidates are so faint (r′ ≈ 20.7 mag for INT-7789-TR-1,
r′ ≈ 18.0 mag for INT-7789-TR-2 and r′ ≈ 19.6 mag for INT-7789-TR-3) makes it very un-
likely that radial velocity observations with 10-m class telescopes will achieve the accuracy
required to determine the actual mass of the companion (Charbonneau 2003).

The most important conclusion from this thesis is that our transit survey from the 2000-
09 run alone has just about reached the sensitivity required to detect a few hot Jupiters
if the abundance of such planets in the field of NGC 7789 is similar to that of the Solar
neighbourhood. At most we have detected 3 transiting hot Jupiters, but our analysis of
these candidates shows that this is very unlikely. Follow-up observations will most likely
show that our candidates are eclipsing binaries, which means that our transit survey will
have produced a null result. Unfortunately it is not possible to estimate the hot Jupiter
fraction for this field under the assumption that our survey has produced a null result.
However we have been able to place useful limits on the hot Jupiter fraction of the different
types of stars in our sample. The most stringent limit on the 3d to 5d hot Jupiter fraction
was obtained for the G stars at 5.2% with a significance level of 1%. This was assuming a
typical hot Jupiter radius similar to that of HD 209458b at ∼1.4RJ (Mazeh et al. 2000).
Extension of our Monte Carlo simulations to the 1999-07 run, where we also looked for
transits, will serve to increase the number of transiting planets that we expected to detect,
and assuming that the 3 transit candidates are shown to be eclipsing binaries by follow-up
observations, then we will be able to place even better limits on the planet fraction as a
function of star type for this field.



A
The M sin i Ambiguity

Theorem 1:

Consider an extra-solar planet P in a circular orbit around a star S such that the orbit lies
in a plane Π with normal n̂. If the orientation of the orbital plane Π is random, then the
probability that the value of sin i is greater than some value t ∈ R is given by:

P(sin i > t) = cos(sin−1(t))

Proof:

Without loss of generality, let n̂ be inclined at an angle 0 ≤ i ≤ π/2 to the line of sight î
(see Figure A.1):

Figure A.1: General configuration of an extra-solar planet in a circular orbit.

The fact that the orientation of the orbital plane Π is random implies that the vector î is
distributed uniformly over the surface of a hemisphere [1].
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The coordinates of the point A in the xy-plane as defined in Figure A.2 are given by:

x = r cos θ

y = r sin θ [2]

Figure A.2: Definition of the xy-plane for the extra-solar planet.

Let:

S1 = Surface area of the hemisphere.

S2 = Surface area of the cap on the hemisphere defined such that i ≤ i0.

Then:

P(i ≤ i0) =
S2

S1
[3] (Using [1])

Now:
S1 = 2πr2 [4]

Also:

S2 =

∫ i0

0
(2πy)r dθ

= 2πr2

∫ i0

0
sin θ dθ (Using [2])

= 2πr2

[

− cos θ

]i0

0

= 2πr2(1 − cos i0) [5]
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Substitute [4] & [5] into [3]:
P(i ≤ i0) = 1 − cos i0 [6]

Now:

P(sin i > t) = 1 − P(sin i ≤ t)

= 1 − P(i ≤ sin−1 t)

= 1 − (1 − cos(sin−1 t)) (Using [6])

= cos(sin−1 t)

Example 1:

The median value of sin i for an extra-solar planet as defined in Theorem 1 is given by:

P(sin i > t) = 0.5

∴ cos(sin−1 t) = 0.5 (By Theorem 1)

∴ t =
√

3/2

Similarly, for the 95% and 99% lower limits to sin i we have:

P(sin i > t) = 0.95

∴ t = 0.31225 . . . ≈ 0.312 (By Theorem 1)

and:

P(sin i > t) = 0.99

∴ t = 0.14106 . . . ≈ 0.141 (By Theorem 1)

Example 2:

For an extra-solar planet of mass Mp with measured/projected mass Mp sin i, calculate
the value of 〈Mp〉.

Firstly:

P(0 ≤ x ≤ i0) = 1 − cos i0 (Using [6])

∴

dP

di0
= sin i0 [7]



A 113

Then:

〈Mp〉 =

〈

Mp sin i

sin i

〉

= Mp sin i

〈

1

sin i

〉

= Mp sin i

∫ π/2

0

1

sin i0

dP

di0
di0

= Mp sin i

∫ π/2

0

1

sin i0
sin i0 di0 (Using [7])

=
π

2
Mp sin i



B
Useful Data/Constants

⊙ ≡ Sun

J ≡ Jupiter

⊕ ≡ Earth

1AU ≡ 1.496 × 1011 m

1pc ≡ 3.086 × 1016 m

1pc ≡ 3.262 ly

aJ = 5.203AU

a⊕ = 1.000AU

R⊙ = 6.960 × 108 m

RJ = 7.131 × 107 m

R⊕ = 6.378 × 106 m

M⊙ = 1.989 × 1030 kg

MJ = 1.899 × 1027 kg

M⊕ = 5.974 × 1024 kg
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RJ = 0.1025R⊙

MJ = 9.548 × 10−4 M⊙

G = 6.673 × 10−11 m3kg−1s−2

c = 2.998 × 108 ms−1



C
Radial Velocity Curves

Theorem 2:

Consider a star S orbiting the centre of mass C of a planetary system containing a single
extra-solar planet. Let the orbit of the star lie in a plane Π′ with normal n̂ and let the
plane Π have a normal î along the line of sight from the Earth. Without loss of generality,
let n̂ be inclined at an angle 0 ≤ i ≤ π/2 to î, and let the planes Π and Π′ intersect along
the line NN′. Also, without loss of generality, let us define a system of perpendicular axes
xyz in Π and x′y′z′ in Π′ such that the origins O and O′ are coincident at C, the x and x′

axes both lie along NN′, the z axis lies in the direction of î and the z′ axis lies in the
direction of n̂. Finally, let P and A denote the periastron and apastron respectively of the
orbit of S around C, let ω be the angle PĈN, let θ be the angle PĈS and let r denote the
distance from C to S. Graphically we have:

Figure C.1: General configuration of the orbit of a star about its centre of mass.
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Then:
dz

dt
=

(

2πG

P

)1/3 Mp sin i

(M∗ + Mp)2/3(1 − e2)1/2
(e cos ω + cos(θ + ω))

Proof:

The general position vector of S in Π′ is given by:





x′

y′

z′



 =





r cos(θ + ω)
r sin(θ + ω)

0



 [1]

The linear transformation from x′y′z′ to xyz is a rotation through an angle −i around the
x′ axis. Such a linear transformation is represented by:





x
y
z



 =





1 0 0
0 cos(−i) sin(−i)
0 − sin(−i) cos(−i)









x′

y′

z′





=





1 0 0
0 cos i − sin i
0 sin i cos i









x′

y′

z′



 [2]

Substitute [1] into [2]:

z = r sin(θ + ω) sin i

∴

dz

dt
=

dr

dt
sin(θ + ω) sin i + r

dθ

dt
cos(θ + ω) sin i

= r
dθ

dt
sin i

(

dr

dθ

sin(θ + ω)

r
+ cos(θ + ω)

)

[3]

Let the orbit of S have semi-major axis a∗ and eccentricity e. Then, for an ellipse:

r =
a∗(1 − e2)

1 + e cos θ
[4]

∴

dr

dθ
= −a∗(1 − e2)(1 + e cos θ)−2(−e sin θ)

=
a∗e(1 − e2) sin θ

(1 + e cos θ)2

=
re sin θ

1 + e cos θ
[5] (Using [4])
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Substitute [5] into [3]:

dz

dt
= r

dθ

dt
sin i

(

e sin θ sin(θ + ω)

1 + e cos θ
+ cos(θ + ω)

)

= r
dθ

dt

sin i

(1 + e cos θ)
(e sin θ sin(θ + ω) + e cos θ cos(θ + ω) + cos(θ + ω))

= r
dθ

dt

sin i

(1 + e cos θ)
(e cos ω + cos(θ + ω)) [6]

Let M∗ and Mp denote the masses of the star and the extra-solar planet respectively. Let
P be the period of the star’s orbit. Then Kepler’s third law (Equation 1.8) states that:

P 2 =
4π2a3

∗

GMc
[7]

where Mc is the equivalent gravitational mass of the centre of mass C given by:

Mc =
M3

p

(M∗ + Mp)2
[8]

Substitute [8] into [7] and rearrange:

a∗ = MpG1/3

(

P

2π(M∗ + Mp)

)2/3

[9]

The total angular momentum of the star L∗ is given by:

L∗ = M∗

√

GMca∗(1 − e2) [10]

The law of conservation of angular momentum requires that:

M∗r
2dθ

dt
= L∗

∴ r
dθ

dt
=

L∗

M∗r

=
M∗

√

GMca∗(1 − e2)

M∗a∗(1 − e2)
(1 + e cos θ) (Using [4] & [10])

=

√

GMc

a∗(1 − e2)
(1 + e cos θ) [11]
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Substitute [11] into [6]:

dz

dt
=

√

GMc

a∗(1 − e2)
sin i (e cos ω + cos(θ + ω))

=

[

(2π(M∗ + Mp))1/3

M
1/2
p G1/6P 1/3

] [

M
3/2
p

(M∗ + Mp)

]

G1/2

(1 − e2)1/2
sin i (e cos ω + cos(θ + ω))

(Using [8] & [9])

=

(

2πG

P

)1/3 Mp sin i

(M∗ + Mp)2/3(1 − e2)1/2
(e cos ω + cos(θ + ω))

Theorem 3:

The quantity K defined by:

K =

(

2πG

P

)1/3 Mp sin i

(Mp + M∗)2/3(1 − e2)1/2

is the semi-amplitude of the radial velocity curve for star S.

Proof:

The radial velocity dz/dt is at a maximum when θ + ω = 0 and at a minimum when
θ + ω = π (By Theorem 2). Denoting the maximum value of dz/dt by A and the
minimum value of dz/dt by B, we have:

A = Ke cos ω + K [12]

B = Ke cos ω − K [13]

Subtract [13] from [12]:

A − B = 2K

∴ K =
A − B

2

Hence K is the semi-amplitude of the radial velocity curve for star S.

For further information, see Aitken (1935) and Hilditch (2001).
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