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ABSTRACT

The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the
globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the
potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558
(m = +  +  -N E, 0.36 0.10, 1.42 0.10 mas yrcl

1( ) ( ) ) as well as the source and show that the lens is not a
cluster member. Even though this particular event does not probe the distribution of planets in globular clusters,
other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens
parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value
found based on the light curve displacement between the Earth and Spitzer.

Key words: globular clusters: individual (NGC6558) – gravitational lensing: micro – planets and satellites:
detection – proper motions

1. INTRODUCTION

The Spitzer gravitational microlensing project has as its
principal aim the determination of the Galactic distribution of
planets (Gould et al. 2014). This primarily means using Spitzer
to measure “microlens parallaxes” pE and thereby estimate the
distances of the individual lenses. By comparing this overall
distance distribution to the one restricted to events showing
planetary signatures, one can determine whether planets are
more common in, for example, the Galactic disk or the bulge
(Calchi Novati et al. 2015a; Yee et al. 2015). Among the 170
microlensing events observed during the 2015 campaign
(Calchi Novati et al. 2015b), one event showed potential for
a very different probe of the “Galactic distribution of planets,”
namely, of the frequency of planets in globular clusters
(relative to disk or bulge stars). The event OGLE-2015-BLG-
0448 lay projected against the globular cluster NGC 6558
(Figure 1), and therefore the lens was potentially a member of
this cluster. The lens mass is measured if one knows the
relative lens-source parallax and the angular size of the Einstein
ring radius (Refsdal 1964). In the case of a globular cluster
lens, one can, in principle, derive the lens mass based on the
Einstein timescale measurement alone (knowing the cluster
distance and proper motion from the literature; Paczyński
1994). In reality, significant uncertainties are introduced by the
dispersion of bulge source proper motions that is comparable to
the cluster proper motion.

Here we present a new method to determine whether the lens
from a microlensing event seen projected against a cluster is in
fact a cluster member, employing observations of the Spitzer
spacecraft as a “microlensing parallax satellite.” The method is
to compare the direction of the heliocentric projected velocity
vhel˜ with that of the proper motion of the cluster relative to the
microlensed source m scl, . As is well known, vhel˜ can be subject
to a four-fold degeneracy in direction (Refsdal 1966;
Gould 1994), but within those degenerate solutions can be

very precisely measured by a parallax satellite (Calchi Novati
et al. 2015a). Therefore, if m scl, can also be measured precisely,
the hypothesis of the cluster lens can be tested with high
precision.
The analyzed event was unusually sensitive to planets,

independent of the possibility that the lens might be a cluster
member. First, the source star is a low-luminosity giant,
meaning that photometry from both the ground and space was
unusually precise. Second, it reached magnification »A 13max
as seen from both the Earth and Spitzer. Such moderate
magnification events are substantially more sensitive to planets
than typical events (Mao & Paczyński 1991; Gould &
Loeb 1992). The combination of these factors led to relatively
intensive monitoring from the ground and exceptionally
intensive monitoring from Spitzer, which further increased
the event’s planet sensitivity. We show that Spitzer residuals
from point-lens models can be fitted with a Saturn-mass ratio
double-lens model. We do not claim planet detection because
Spitzer photometry of neighboring constant stars shows
systematic trends that could mimic the planetary signal if
superimposed on a purely point-lens (Paczyński 1986) light
curve. The only known planet in a globular cluster is in a
system with a white dwarf and pulsar (Richer et al. 2003;
Nascimbeni et al. 2012).
The light curve of OGLE-2015-BLG-0448 is analyzed here

for two different purposes: to measure the microlens parallax
and to estimate the planet sensitivity. The available ground-
based data are survey observations by the Optical Gravitational
Lens Experiment (OGLE) project and the follow-up observa-
tions taken by three groups: the Microlensing Follow Up
Network (μFUN), RoboNet, and the Microlensing Network for
the Detection of Small Terrestrial Exoplanets (MiNDSTEp).
For parallax determination, we use only OGLE photometry; the
long-term monitoring by the OGLE survey is crucial in
deriving the event timescale and parallax constraints. OGLE
photometry is also well characterized and systematic trends in
the data are at a relatively low level. On the other hand, the
planet sensitivity is the highest if many data points are taken
close to the light curve maximum (Griest & Safizadeh 1998).
The field including OGLE-2015-BLG-0448 is observed
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infrequently by the OGLE survey, hence the OGLE light curve
does not contribute much to the planet sensitivity. The
follow-up data give us much more information with this
regard: they are taken from multiple sites allowing better time
coverage and reduced dependence on weather at a single site,
and they can be also taken with much higher cadence because
many telescopes are targeted on a single event. However,
extending the event coverage by most of the follow-up
observatories is not possible because of their limited resources
or the chosen observing strategy. Additionally, many events get
faint far from the peak and the smaller telescopes photometry in
dense stellar regions may be affected by systematic trends that
could corrupt the measurements of the event timescale and
parallax. Hence, the ground-based measurements of the event
timescale and parallax are best done with the OGLE data only,
but follow-up observations are included for the planet
sensitivity calculations.

We describe the observations in Section 2. In Section 3 we
analyze first the ground-based light curve alone and then the
combined Spitzer and ground-based light curves. We measure
the microlens parallax pE and the closely related relative
velocity projected on the observer plane vhel˜ , which are
required to determine the lens location. In Section 4, we
measure the proper motions of NGC 6558 and of the source
star in the same frame of reference, which allows us to
determine their relative proper motion, m scl, . Comparison of
directions of the lens-source projected velocity and the cluster-
source proper motion proves that the lens is not in the cluster.
Having eliminated this possibility, in Section 5, we demon-
strate that the lens (host star) almost certainly lies in the
Galactic bulge, implying that it is a low-mass star and that the
tentative planet would therefore be a cold Neptune. The planet
sensitivity of the event, which will eventually be required for

the determination of the Galactic distribution of planets, is
analyzed in Section 6. We conclude in Section 7. We discuss
the tentative planet detection in the Appendix.

2. OBSERVATIONS

2.1. OGLE Alert and Observations

On 2015 March 20, the OGLE survey alerted the community
to a new microlensing event OGLE-2015-BLG-0448 based on
observations with the 1.4 deg2 camera on the 1.3 m Warsaw
Telescope at the Las Campanas Observatory in Chile (Udalski
et al. 2015) using its Early Warning System real-time event
detection software (Udalski et al. 1994; Udalski 2003). Most
OGLE observations were taken in the I band, and V-band
observations are only used to determine the source properties.
At equatorial coordinates ( -  ¢ 18 10 14. 38, 31 45 09. 4h m s ) and
Galactic coordinates  - 0 .20, 6 .01( ), this event lies in the
OGLE field BLG573, implying that it is observed roughly once
per two nights (see Figure 15 from Udalski et al. 2015). We
analyze 65 data points collected during the 2015 bulge season
before ¢ º - =HJD HJD 2450000 7301.6 (October 6) and
supplement them with the 73 data points taken in 2014. To
account for underestimated uncertainties that are reported by
the image subtraction software, we multiplied the uncertainties
by a factor of 1.8, so that the point-lens parallax model results
in c »dof 12 .

2.2. Spitzer Observations

OGLE-2015-BLG-0448 was announced by the Spitzer team
as a target on 2015 May 19 UT 20:45 (HJD′= 7162.4), about
2.5 weeks before the beginning of the 2015 Spitzer observa-
tions (proposal ID: 11006, PI: Gould) and 3.5 weeks before this
particular object could be observed (HJD′= 7187.1) due to
Sun-angle restrictions. The reason for this early alert was that
the source was bright and appeared to be heading for relatively
high magnification, making it relatively sensitive to planets.
According to the protocols of Yee et al. (2015), planet
detections (and sensitivity) can only be claimed for observa-
tions after the Spitzer public selection date (or if the event was
later selected “objectively,” which was not possible for this
event due to low OGLE cadence). Furthermore, without a
public alert, the event would not have attracted attention for the
intensive follow-up required to raise sensitivity to planets. The
Spitzer cadence was set at once per day, and this cadence was
followed during the second week of the campaign, when
OGLE-2015-BLG-0448 came within Spitzerʼs view.
However, the Yee et al. (2015) protocols also prescribe that

once all specified observations are scheduled, any additional
time should be allocated to events that are achieving relatively
high magnification during the next week’s observing window,
with the cadence of these events rank ordered by the s1 lower
limit of expected magnification. Based on this, OGLE-2015-
BLG-0448 was slated for cadences of 4, 8, 8, and 4 per day
during weeks 3, 4, 5, and 6, respectively. Due to the fact that it
lay far to the east, OGLE-2015-BLG-0448 could be observed
until the end of the campaign at HJD′ = 7222.78. Altogether
we collected 210 epochs, each consisting of six 30 s dithers.
The photometry was obtained with a modified version of the
Calchi Novati et al. (2015b) pipeline, which fits the centroid
and brightness of every star for each frame separately. The
error bars reported by this pipeline are a nearly linear function
of the measured flux, hence we assumed the error bars are equal

Figure 1. Finding chart for OGLE-2015-BLG-0448. We marked the center of
the globular cluster NGC 6558 (core radius and half-light radius of ¢0.03 and
¢2.15, respectively), the event (baseline brightness =I 16.34 mag; 58. 5 from
cluster center ), and the neighboring RR Lyr star OGLE-BLG-RRLYR-14873
(mean brightness =I 15.52 mag). North is up, and east is left. The image
is ¢ ´ ¢1.5 1.5.
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to the value of this linear function multiplied by the factor 4.3
that brings c dof2 to 1 for the parallax point source model.

2.3. μFUN Observations

As one of the few very bright Spitzer events, and one that
was not intensively monitored by microlensing surveys (and so
required follow-up to achieve reasonable planet sensitivity),
OGLE-2015-BLG-0448 was targeted by μFUN, including the
following five small-aperture telescopes from Australia and
New Zealand: the Auckland Observatory 0.5 m (R band), the
Farm Cove Observatory 0.36 m (unfiltered, Pakuranga), the
PEST Observatory 0.3 m (unfiltered, Perth), the Possum
Observatory 0.36 m (unfiltered, Patutahi), and the Turitea
Observatory 0.36 m (R band, Palmerston North). μFUN also
observed the event regularly using the dual ANDICAM
optical/IR camera on the 1.3 m SMARTS telescope at CTIO,
Chile. Almost all the optical observations are in the I band. The
IR observations are all in the H band but these are for source
characterization and are not used in the fits. Follow-up
photometric data were also taken by the Wise Collaboration
on their 1.0 m telescope at Mitzpe Ramon, Israel. A limited
number of additional measurements were taken using two
0.7 m MINiature Exoplanet Radial Velocity Array telescopes at
Mt. Hopkins, USA (Swift et al. 2015).

All μFUN data were reduced using DoPhot software
(Schechter et al. 1993). The photometry of this event is
hampered by an ab-type RR Lyrae variable OGLE-BLG-
RRLYR-14873 (Kunder et al. 2008; Soszyński et al. 2011) that
lies projected at 2 4 from the event (Figure 1), has an I-band
amplitude of 0.23 mag, and period of 0.67 days. Because
DoPhot fits separately for the flux of each star at each epoch, it
is ideally suited to remove the effects of this neighboring
variable, even when the point spread functions (PSFs) of the
two stars overlap, as they frequently do for the smaller μFUN
telescopes. By contrast, plain vanilla image-subtraction algo-
rithms fit only for variations centered at the source and so
include residuals from neighboring PSFs, if these overlap.
Unfortunately, DoPhot failed to separately identify the source
in PEST data and so these could not be used. Possum data
showed unusual scatter and were also excluded.

2.4. RoboNet Observations

RoboNet observed OGLE-2015-BLG-0448 from three Las
Cumbres Observatory Global Telescope Network (LCOGT)
sites in its southern hemisphere ring of 1.0 m telescopes:
CTIO/Chile, SAAO/South Africa, and Siding Spring/Aus-
tralia (Brown et al. 2013). Different telescopes at the same site
are indicated as A, B, and C. Two CTIO telescopes (A and C)
were equipped with the new generation of Sinistro imagers that
consist of 4k × 4k Fairchild CCD-486 Bl CCDs and offer a
field of view of 27′ × 27′. Other telescopes support SBIG STX-
16803 cameras with Kodak KAF-16803 front illuminated
4k × 4k pix CCDs, used in bin 2 × 2 mode with a field of view
of 15 8 × 15 8. All observations were made using SDSS- ¢i
filters. Standard debiasing, dark subtraction, and flat fielding
were performed for all data sets by the LCOGT Imaging
Pipeline, after which Difference Image Analysis was conducted
using the RoboNet Pipeline, which is based around DanDIA
(Bramich 2008; Bramich et al. 2013).

LCOGT employed its TArget Prioritization algorithm (M.P.
G. Hundertmark et al. 2016, in preparation) to select a subset of

events from the Spitzer target list based on their predicted
sensitivity to planets, which were drawn from Spitzer targets
that fell in regions of lower survey observing cadence. OGLE-
2015-BLG-0448 was given priority because it fell within such
a region, and due to the added scientific value of the proximity
of the globular cluster.

2.5. MiNDSTEp Observations

The MiNDSTEp consortium observed OGLE-2015-BLG-
0448 using the Danish 1.54 m telescope at ESOs La Silla
Observatory, Chile and the 0.35 m Schmidt-Cassegrain tele-
scope at Salerno University Observatory, Italy. The Danish
telescope provides two-color Lucky Imaging photometry using
an instrument consisting of two Andor iXon+ 897 EMCCDs
with a dichroic splitting of the signal at 655 nm into a red and a
visual part, thereby collecting light from 466 nm to 655 nm
(“extended V”) in the visual camera and from 655 nm to
approximately 1050 nm (“extended Z”) in the red sensitive
camera. The camera covers a 45″ × 45″ field of view on the
512 × 512 pixel EMCCDs with a scale of 0.09 arcsec pixel−1

and were operated at a frame rate of 10 Hz and a gain of 300
e−/photon. Online reductions and offline re-reductions were
performed with the Odin software (Skottfelt et al. 2015), which
is based on the DanDIA image subtraction and empirical PSF
fitting. The Salerno data were taken in the I band with a SBIG
ST-2000XM CCD, and the images were reduced using a
locally developed PSF fitting code. In total, the Danish
telescope has reported 148 V-band and 182 Z-band data points,
and the Salerno University telescope 98 data points to the light
curve of OGLE-2015-BLG-0448 with the data collection
strategy informed and implemented by means of the ARTEMiS
system (Automated Terrestrial Exoplanet Microlensing Search
Dominik et al. 2008).
We phased the residuals from the preliminary model with the

pulsation period of the nearby RR Lyr and found significant
contamination in the case of Salerno as well as LCOGT CTIO
A and SSO B data. To correct for this contamination, we
decomposed each of these data sets into source flux, blending
flux, and scaled OGLE light curve of the RR Lyr. The
contribution of the RR Lyr was then subtracted. Error bars for
every follow-up data set were scaled so that c »dof 12 .

3. LIGHT CURVE ANALYSIS

We begin by fitting a simple five parameter model:
pt u t, , ,0 0 E E( ) to the OGLE data. Here t u t, ,0 0 E( ) are the

standard Paczyński (1986) parameters, i.e., time of maximum
light, impact parameter (scaled to qE), and Einstein timescale,
all as seen from Earth. The remaining two parameters are the
microlens parallax vector pE

p
mp

q m
q
m

º =t; , 1E
rel

E

geo

geo
E

E

geo

( )

where qE is the angular Einstein radius

q k p kº º 


M
G

c M
;

4

au
8.14

mas
, 2E

2
rel 2

( )

whereM is the lens mass, and p º -- -D Dau L Srel
1 1( ) and mgeo

are the lens-source relative parallax and proper motion,
respectively, the latter of which in the geocentric frame at the
peak of the event as seen from the ground.
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Ground-based parallax models suffer from a two-fold
degeneracy in u0 (Smith et al. 2003). Table 1 presents
parameters of the models with u0 > 0 and u0 < 0 that have
almost the same χ2. We note that both models have similar p EE,

but slightly different p NE, and p > 0NE, at the 2.2σ level. The fit
to the OGLE data without parallax is worse by Δχ2 = 10.

After fitting the OGLE data with a point-lens model, we
analyze the OGLE and Spitzer data jointly. The parallax point-
lens fit (Figure 2) shows significant systematic residuals in
Spitzer but not in the OGLE data. Such a possibility was
anticipated by Gould & Horne (2013), who suggested that
space-based parallax observations might uncover planets that
are not detectable from the ground because the spacecraft
probes a different part of the Einstein ring. However, such a
situation has never previously been observed.

The Spitzer residuals are qualitatively similar to those
analyzed by Gaudi et al. (2002) for OGLE-1999-BUL-36.
They found that this form of residuals could be explained either
by a low mass-ratio companion ( q 1) with projected
separation (normalized to qE) <s 1, or by light curve
distortions induced by the accelerated motion of the observer
on Earth, i.e., orbital parallax (Gould 1992). However, in the
present case, the latter explanation is ruled out because the
parallax is measured (and already incorporated into the fit)
from the offsets in the observed t u,0 0( ) as seen from Earth and
Spitzer,

p t b t

b

D D D º
-

D º  - 


^


Å

 Å


D

t t

t
u u

au
, ; ;

. 3

E,
0, 0,sat

E

0, 0,sat

( )

( )

Here, D̂ is the Earth-satellite separation projected on the sky
(changes from 0.84 to 1.31 AU over the course of Spitzer
observations) and where the subscripts ⊕ and “sat” indicate
parameters as measured from the Earth and the satellite,
respectively. The four solutions are specified ( ) according
to the signs of u0 as seen from the Earth and Spitzer,
respectively. See Gould (2004) for sign conventions. Table 2
lists four possible solutions, including the heliocentric

projected velocity,

p
p

= + =Å ^v v v v
t

;
au

, 4hel geo , geo
E

E
2

E
˜ ˜ ˜ ( )

Table 1
OGLE-2015-BLG-0448 Point-lens Parameters Based on OGLE Data

Parameter Unit u0 > 0 u0 < 0

c2 125.1 125.0

t0 day 7213.153 7213.153
±0.016 ±0.016

u0 L 0.0874 −0.0876
±0.0016 ±0.0017

tE day 61.23 60.83
±0.84 ±0.95

p NE, L 0.113 0.180

±0.052 ±0.081

p EE, L −0.104 −0.111

±0.034 ±0.037

F Fb base OGLE( ) L −0.002 −0.004
±0.019 ±0.020

Figure 2. Point-lens fit (with parallax) to Spitzer and OGLE light curves of
OGLE-2015-BLG-0448. The model (light blue line) fits the OGLE data (black
points) quite well, but there are strong residuals in the Spitzer data (red points
and dark blue line), particularly near the start of the observations. The green
line shows the planetary lens model for the Spitzer data, which is discussed in
the Appendix. The green long-dashed line in the lower plot shows the
difference between the Spitzer point-lens and double-lens models.

Table 2
OGLE-2015-BLG-0448 Point-lens Parameters Based on OGLE and

Spitzer Data

Parameter Unit ++( ) (−−) +-( ) -+( )
c2 346.5 344.1 380.3 337.4

t0 day 7213.135 7213.136 7213.116 7213.146
±0.014 ±0.014 ±0.014 ±0.014

u0 L 0.0863 −0.0866 0.0853 −0.0874
±0.0010 ±0.0010 ±0.0010 ±0.0010

tE day 61.91 61.68 62.51 61.02
±0.51 ±0.51 ±0.52 ±0.51

pE,N L −0.0174 0.0008 −0.1321 0.1142

±0.0005 ±0.0005 ±0.0014 ±0.0012

pE,E L −0.0912 −0.0956 −0.0870 −0.1088

±0.0009 ±0.0009 ±0.0008 ±0.0010

F Fb base OGLE( ) L 0.013 0.009 0.026 −0.002
±0.011 ±0.011 ±0.011 ±0.011

vN,hel˜ -km s 1 −56.93 1.77 −146.84 129.67

±1.30 ±1.22 ±0.41 ±0.36

vE,hel˜ -km s 1 −267.54 −265.28 −67.96 −95.78

±0.80 ±0.85 ±0.37 ±0.41
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where = -Å ^
-v N E, 0.6, 28.3 km s,

1( ) ( ) is the velocity of
Earth projected on the sky at the peak of the event. The -+( )
solution is preferred over the other ones by cD = 6.72 because
OGLE data prefer p > 0NE, and this solution has the highest
p NE, . The comparison of Tables 1 and 2 shows that the OGLE
parallax measurement (which is based on slight light curve
distortion) is consistent with the OGLE+Spitzer result (which
is based on the difference in t0 and u0 between the two
observatories). Figure 3 displays the projected velocity vectors
for these four solutions.

There are only three possible causes of Spitzer point source,
point-lens residuals: a binary (or planetary) companion to the
lens, a binary companion to the source, or an unmodeled
systematics in the light curve. Binary-source explanations for
the residuals are basically ruled out by the fact that no sign of
source binarity is seen in the OGLE light curve. Of course, one
possible explanation for the lack of binarity effects would be an
extremely red source, which has much less flux in the Iband
than in Spitzerʼs 3.6 μm that it simply does not show up in the
OGLE data. However, the source is a red giant, so there are
very few stars on the color–magnitude diagram (CMD) that are
significantly redder. For two of the solutions (++ and −−) in
Table 2, the source follows the same trajectory as seen from the
Earth and Spitzer, just separated in time. Hence, binary-source
solutions are obviously inconsistent with the OGLE data. For
the other two solutions, the second source could pass farther
from the lens as seen from the Earth compared to Spitzer by a
factor » + + » +Å ¢ ¢u u u u1 1 0.160,sat 0, 0,sat 0,sat( ) where

¢u0,sat is the impact parameter of the source’s companion as
seen by Spitzer. Given the slow development of the deviation,

¢u 0.10,sat , implying that this ratio of impact parameters is
2.6. The source is already close to the reddest stars on the
CMD, hence the amplitudes of deviation have to be similar to
the ratio of impact parameters, which is clearly ruled out by the

data. Notwithstanding these general arguments, we fit for
binary-source solutions. We confirm that they are not viable.
The binary-lens models with planetary mass ratio are discussed
in the Appendix.

4. PROPER MOTION MEASUREMENTS

4.1. NGC 6558 Proper Motion Measurements in the Literature

The first measurement of the NGC 6558 proper motion was
presented by Vásquez et al. (2013). Stars on the upper red giant
branch ( <I 16.5 mag) and bluer than bulge giants were
selected as cluster members and the mean proper motion
of these stars was reported: m = N E, 0.06 0.14,cl ( ) (

 -0.52 0.14 mas yr 1) . The bluer red giants were chosen
because the metallicity of the cluster stars is lower than the
bulge red giants. Hence, cluster members on the giant branch
are expected to be bluer. However, the bulge red giants show
significant metallicity spread (Zoccali et al. 2008) and thus
some bulge red giants can be mistaken for cluster members.
Therefore, one expects the Vásquez et al. (2013) measurement
to be biased toward smaller proper motion values. Additionally,
the cluster proper motion relative to the bulge could be
underestimated because cluster members may have been
included in the ensemble used to establish the “bulge” frame.
Rossi et al. (2015) published the only other NGC 6558

proper motion: m =  - N E, 0.47 0.60, 0.12 0.55cl ( ) ( )
-mas yr 1. In their approach, cluster member selection and

frame alignment (needed for any proper motion measurement)
were combined into one iterative process. The CMD decom-
posed into cluster and field stars can be used to diagnose the
reliability of this process. The most prominent cluster feature
on the CMD is the blue horizontal branch defined by the stars
of V > 16 and - <V I 0.9( ) . The decomposed CMDs for the
cluster and the field reveal a very similar number of stars in this
region, even though we do not expect field stars with these
properties. The problems with decomposing blue horizontal
branch stars suggests that the iterative process used to select
cluster members and measure proper motions failed in
this case.

4.2. NGC 6558 Proper Motion Measurement From
the OGLE-IV Data

We use two different methods to measure the proper motion
of NGC 6558. In both cases, we make use of five years of
OGLE-IV observations of this field. We first establish a
“Galactic bulge reference frame” by identifying red giant stars
from the CMD on the chip where the cluster lies, but excluding
a circle of radius 1 52 around the cluster itself.55 We note that
for the immediate purpose of this paper, it is not important
whether this reference frame is contaminated by non-bulge
stars because we will measure the proper motion of the source
in the same frame. However, the general utility of this
measurement does require that this be the bulge frame, and
the red giants are the best way to define this. Because the
reference frame is defined by 2000 stars whose dispersion is
about -2.7 mas yr 1 in each direction, it is randomly offset from
the “true bulge frame” by -0.06 mas yr 1 in each direction.

Figure 3. Comparison of directions of astrometrically measuredm scl, (red) with
four degenerate projected velocities vhel˜ based on microlensing data. The
proper motion measurement has been scaled by an arbitrary distance (10 kpc)
so that it has the same units and approximately same size as the projected
velocities. The direction ofm scl, is inconsistent with any of the four vhel˜ . Hence,
the lens does not belong to the cluster.

55 The NGC 6558 cluster core radius and half-light radius are 0 03 and 2 15,
respectively. The cluster tidal radius is 102.50 times the core radius (Harris 1996,
2010 edition). OGLE-2015-BLG-0448 lies 58 5 from the center.

6

The Astrophysical Journal, 823:63 (11pp), 2016 May 20 Poleski et al.



In the first method, we measure the proper motion of each
star <I 18 mag within a radius of 0 87 from the cluster center.
We fit the resulting distribution of 518 proper motion
measurements to the sum of two two-dimensional Gaussians,
described by a total of four parameters, i.e., the cluster proper
motion mcl, a single isotropic “cluster” dispersion σcl (actually
mostly due to measurement error rather than intrinsic
dispersion), and the fraction of all stars in the sample that
belong to the cluster, p. The second Gaussian is assumed to
have the same properties as the bulge population, i.e., a
centroid at (0, 0) and a dispersion -2.7, 2.7 mas yr 1( ) .

We find = p 24 3%, s = -0.65 mas yrcl
1, and

m = +  +  -N E, 0.36 0.08, 1.39 0.08 mas yr . 5cl,1
1( ) ( ) ( )

See Figure 4. The measured dispersion of cluster stars is
significantly smaller than the dispersion of bulge stars. Hence,
the cluster proper motion measurement depends only on stars
in relatively small range of proper motions. The contribution of
bulge stars to this part of the proper motion distribution does
not significantly change with bulge dispersion.

In the second method, we measure the proper motions of five
spectroscopically confirmed cluster members (Zoccali et al.
2008; Dias et al. 2015), and find

m = +  +  -N E, 0.37 0.08, 1.47 0.09 mas yr , 6cl,2
1( ) ( ) ( )

where the error is determined from the scatter. See the upper
left panel of Figure 4. Since these are consistent at 1σ, we
combine the two measurements to obtain

m = +  +  -N E, 0.36 0.06, 1.42 0.06 mas yr . 7cl
1( ) ( ) ( )

We remind the reader that these errors are relative to the frame,
which is what is relevant to our current application. Since the
frame itself has errors of -0.06 mas yr 1, the total error in this
value in the “true bulge frame” is -0.08 mas yr 1.

4.3. Proper Motion of the Source Star

We measure the proper motion of the OGLE-2015-BLG-
0448 source in the same frame:

m = -  -  -N E, 1.81 0.40, 0.27 0.40 mas yr . 8s
1( ) ( ) ( )

We estimate the error in two ways. First, we note that the two
methods of measuring mcl revealed scatters of -0.65 mas yr 1

and -0.18 mas yr 1 for the two star samples with median
brightness of I ≈ 17.2 mag and I ≈ 14.2 mag, respectively.
Given that the OGLE-2015-BLG-0448 source has a baseline
magnitude of Ibase = 16.34, we adopt an intermediate value of

-0.40 mas yr 1. Second, substantial experience from regions
where two OGLE fields overlap, shows that proper-motion
errors are typically at about this level for I ≈ 16.5 mag stars.

Figure 4. Proper motions of stars within ¢0.87 of the center of NGC 6558 based on OGLE-IV data. Left panels: vector-point diagrams. The distribution was fit to the
sum of two Gaussians, one for the bulge, centered at (0, 0) and with the known bulge dispersion s = -2.7 mas yr 1 (green circle), and the other with freely fit center
and dispersion (blue circle). This gives one measure of the cluster proper motion in the bulge frame m = +  + N E, 0.36 0.08, 1.39 0.08cl ( ) ( ). In a second
method, we take the average proper motion of five spectroscopically confirmed cluster members (small red circles, upper left zoomed panel only), which yields
m = +  + N E, 0.33 0.08, 1.49 0.08cl ( ) ( ). Since these are consistent, we combine them to yield Equation (7). Right panels: histograms of proper motion
components. Red lines present fits to distributions.
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The relative proper motion between the cluster and the
source star is

m = +  +  -N E, 2.17 0.40, 1.69 0.40 mas yr . 9scl,
1( ) ( ) ( )

4.4. The Lens Is Not a Cluster Member

We put the proper motion vector m scl, (Equation (9)) on
Figure 3 in order to test whether its direction is consistent with
any of the lens-source projected velocities. Because m scl, and
vhel˜ have different units, m scl, must be multiplied by a
dimensional quantity in order to be displayed on the same
plot. We call this Drel for reasons that will become clear. We
have chosen =D 10 kpcrel simply because the vectors are then
roughly the same size. Them scl, is clearly inconsistent with any
of the four values of vhel˜ , hence the lens is definitely not in the
cluster.

However, if m scl, had been consistent with one of the vhel˜ ,
then Drel required to make the two vectors in Figure 3 align
would have provided an additional test for cluster membership.
That is,

m p
= 

v
D

au
, 10

l s

hel

, rel
rel

˜ ( )

where ml s, is the lens-source relative proper motion, which,
for our purposes, can be taken as identical to the cluster
proper motion because  m mm m- - = v Dl s s l l L, cl, cl ,cl∣ ∣ ∣ ∣

-0.2 mas yr 1. Here vl,cl is the lens velocity in the cluster frame.
If, for example, m scl, had been in exactly the opposite

direction to the one measured, it would have been consistent in
direction with +-vhel,˜ . Then, identifying the lens as in the
cluster would have implied p m 100 assrel,cl, . This would have
been an implausible value because the cluster is believed to be
at »D 7 kpc, i.e., p m» 140 ascl , which would imply
p m= 40 ass , i.e., =D 25 kpcS . That is, the Drel required to
align m scl, and vhel˜ provides a powerful consistency check on
the identification of the lens as a cluster member.

5. THE LOCATION OF THE LENSING SYSTEM

For a large fraction of past planetary microlensing events, qE
is measured from the finite source effects since the model then
yields *r q q= E and the angular source radius *q is easily
measured (Yoo et al. 2004). Unfortunately, this event contains
no caustic crossings or cusp approaches, so this standard
method cannot be applied. Calchi Novati et al. (2015a) showed
that for events with measured parallaxes pE, the lens distance
(and hence the mass) could be estimated kinematically, with
relatively small error bars. However, of the 21 events analyzed
there, all but 1 had projected velocities that either were quite
large ( > -v 700 km shel

1˜ ) or were consistent in direction with
Galactic rotation. The first group are easily explained as
Galactic bulge lenses p 0.02 masrel , since m p= vhel rel˜

p= - -vau 3 mas yr 700 km s 0.02 mas1 1
rel( ˜ )( ), which is a

typical value for bulge lenses. The second group are easily
explained as lenses rotating with the Galactic disk, with the
magnitude of vhel˜ giving a rough kinematic distance estimate

*
p m vaurel sgrA hel˜ and

*
m = -6.38 mas yrsgrA

1 is the proper
motion of SgrA*. The one exception was OGLE-2014-BLG-
0807, for which the favored solutions had » -v 200 km shel

1˜ .
The best model -+( ) in Table 2 has = -v 161.2 4 km shel

1˜ ( ) ,
while the models ++( ) and (−−) that fit the data slightly worse

predict = -v 270 km shel
1˜ . Neither of the vhel˜ vectors is aligned

with Galactic disk rotation, hence there is a low probability that
the lens is in the Galactic disk. The measured projected velocity
could be explained by a bulge lens if the lens-source relative
parallax were larger than typical. The line of sight toward the
event at Galactic coordinates =  - l b, 0 .20, 6 .01( ) ( ) crosses
the two arms of the bulge X-shaped structure (McWilliam &
Zoccali 2010; Nataf et al. 2010; Gonzalez et al. 2015). Hence,
it is possible that the lens is in the closer part of the bulge and
the source is much further away and the relative parallax is
higher than typical. Even in this case the = -v 270 km shel

1˜
solutions would be preferred over = -v 160 km shel

1˜ , i.e.,
contrary to the least-squares fits to the OGLE data. In either
case, the most likely lens location is in the closer part of the
bulge.

6. PLANET SENSITIVITY

With peak magnifications of 11 (from ground) and 14 (from
Spitzer), and average cadences of 36 per day (ground-based
survey plus follow-ups) and 6 per day (for Spitzer), the event
OGLE-2015-BLG-0448 is among the Spitzer 2015 events that
are most sensitive to planet perturbations. Therefore, we
present the planet sensitivity of this event here, which will
also be required for the determination of the Galactic
distribution of planets, regardless of whether or not the planet
detection in this event is real. Planet sensitivity S is defined as
the probability of detecting a planet with the given properties:
projected separation s (in units of Einstein ring radius) and
mass ratio q.
We compute the planet sensitivity of this event using the

method that was first proposed by Rhie et al. (2000) and further
developed by Yee et al. (2015) and Zhu et al. (2015) to include
space-based observations. Details of the method can be found
in the latter two references. In brief, we first measure the planet
sensitivity S as a function of q and s. For each set of (q, s), we
generate 300 planetary light curves that vary in angle between
the source trajectory and the lens binary axis, α, but have other
parameters fixed to the observed values. For each simulated
light curve, we then find the best-fit single-lens model using the
downhill simplex algorithm. The deviation between the
simulated data and its best fit, single lens model is quantified
by cSL

2 . For a subjectively chosen event, which is the case of
OGLE-2015-BLG-0448, we first fit the simulated data that
were released before the selection date tselect and find cSL,select

2 .

If c > 10SL,select
2 , we regard the injected planet as having been

noticeable and thus reject this α; otherwise, we compare cSL
2

from the whole light curve with our pre-determined detection
threshold, and consider the injected planet as detectable if
c c>SL

2
threshold
2 . The sensitivity S q s,( ) is the fraction of α

values for which the planet is detectable. We assume Öpik’s
law in s, i.e., a flat distribution of slog , and compute the
integrated planet sensitivity S(q).
We adopt the following detection thresholds, which are more

realistic than that used in Zhu et al. (2015): C1: c > 300SL
2 and

at least three consecutive data points showing s>3 deviations;
or C2: c > 500SL

2 . C1 is used mainly to recognize sharp
planetary anomalies. Some of these anomalies might not be
treated as reliable detections with only the current data because
of the low cSL

2 . However, they are nevertheless significant
enough to trigger the automatic anomaly detection software
and/or attract human attentions, either of which would lead to
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dedicated follow-up observations of the anomalies and thus
confirm these otherwise marginal detections. C2 as a supple-
ment of C1 intends to capture the long-term weak distortions
that may not show sharp deviations.

The calculation of planet sensitivity requires ρ as an input.
Here we estimate ρ following the prescription given by Yee
et al. (2015): *r q q= E where q p p=E rel E. The parallax pE is
well measured thanks to a combination of the OGLE and the
Spitzer data, hence below we need to estimate only prel and *q .
The lens-source relative parallax can be easily found under the
assumption that the lens is in the closer arm of the X-shaped
structure and the source is in the farther arm. We follow Nataf
et al. (2015), who modeled in detail the properties of the
X-shaped structure in OGLE-III fields. The two centroids of
RC luminosity functions corrected for extinction are

=I 14.210 magRC1,0 and =I 14.715 magRC2,0 for the event
location (average values for fields BLG169 and BLG170). For
the absolute RC brightness of = -M 0.12 magI,RC , the
corresponding distances are 7.3 and 9.3 kpc,
hence, p = 0.028 masrel .

To calculate *q , we assume the source I-band brightness and
-V I( ) color are the same as the baseline object:
=I 16.337 mags and - =V I 1.589 mags( ) (Szymanński

et al. 2011). This is justified because none of our models
predicts significant blending. We corrected for extinction using
Nataf et al. (2013) extinction maps and obtain:

=I 15.711 mags,0 and - =V I 1.046 mags,0( ) . This
-V I s,0( ) corresponds to - =V K 2.419 mags,0( ) (Bessell

& Brett 1988). The Kervella et al. (2004) color-surface
brightness relation gives *q m= 3.4 as. Finally,

*r q p p= = 0.019E rel and 0.011 for -+( ) and (−−) models,
respectively.

We plot all the ground-based data in Figure 5. The highest
contribution to the planet sensitivity comes from the Auckland
and LCOGT CTIO A data sets. We compute the planet
sensitivity for two out of four possible solutions, (−−) and
-+( ), and show the results in Figure 6. Both solutions show
substantial planet sensitivity (>10%) down to = -q 10 4. The
-+( ) solution shows slightly higher sensitivity for
 ´ -q 2 10 4, mostly because observations taken from the

satellite and the Earth are probing different regions in the
Einstein ring, as has been discussed in Zhu et al. (2015); see
also Figure 7 here for a demonstration. At smallest q values, the
-+( ) solution is less sensitive than the (−−) solution because
the larger source size (r = 0.019) smears out subtle features
due to small planets. Figure 7 shows the detectability of planets
with mass ratio = ´ -q 1.70 10 4 as functions of planet
positions for both investigated solutions. It is clear that the
tentative planet detection reported here can only happen in the
-+( ) solution.

7. CONCLUSIONS

The event OGLE-2015-BLG-0448 presented a number of
unique properties. It lay projected within tidal radius of the
globular cluster. The maximum magnification reached was
relatively high both for Spitzer and ground-based observations.
It was also intensively monitored both from the ground and
from space. All these properties made it a potential probe of the
population of planets in globular clusters.
We analyzed the event photometry from both Spitzer and

ground-based telescopes: the OGLE survey and follow-up
networks of μFUN, RoboNet, and MiNDSTEp. Microlens
parallax was measured using the difference in event properties
as seen from the ground and space. The result confirmed the
microlens parallax measured using only the OGLE data.
Additionally, long-term astrometry of OGLE images were used
to measure proper motions. We measured the proper motion of
globular cluster NGC 6558 and the event source. Our analysis
reveals that the lens could not be a cluster member. The same
methods can be used for other potential cluster lens events that
are observed by satellites.
We found that the Spitzer light curve reveals significant

trends in residuals of the point-source point-lens model. The
only two plausible causes of these trends are problems with
Spitzer photometry or a planetary companion to the lens. We
do not claim planet detection, but provide the results of
planetary model fitting in case the event photometry is proven
to be correct.
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Figure 5. Ground-based light curve of OGLE-2015-BLG-0448. Different
colors represent different data sets. For clarity, the follow-up data were
averaged in bins separately chosen for each data set. The bins were set based on
comparison of the uncertainty of the weighted point and the change of the
model brightness over the bin timespan. For each bin, the uncertainty of the
weighted point is smaller than the maximum difference between the model
brightness and the mean model value. There are 462 bins that are based on
1638 follow-up data points.
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APPENDIX
Tentative Planet

The point source model fitted to the Spitzer data resulted in
residuals with significant trends. Here we discuss the possibility
that these residuals were caused by the companion to the lens.

The only possible binary-lens solutions must have planetary
mass ratios q 1 and projected separations s (in units of

Einstein ring) satisfying - »-s s 0.51∣ ∣ , i.e., » slog 0.11,
which follows from simple arguments. First, the source passes
the lens at »u 0.080 as seen from both the Earth and Spitzer.
Since neither light curve is perturbed at peak, this already
implies that the central caustic is small. Such small central
caustics require either s 1, s 1, and/or q 1. However,
if either of the first two held, there could not be a significant
perturbation at the point that it is observed at »u 0.5sat . That
is, the event timescale »t 60E days is set by the unperturbed
OGLE light curve. Hence, the fact that the Spitzer curve
experiences an excess roughly 30 days before peak implies that
there is a caustic structure at » =u 30 60 0.5sat .
Thus, q 1. In this planetary regime, such caustics occur

when the planet is aligned to one of the two unperturbed
images of the primary lens at = - -u s s 1∣ ∣, i.e.,
= -  +s u u 4 22 1 2∣ ( ) ∣ . Hence, »slog 0.11∣ ∣ .
Finally, the fact that the Spitzer light curve is perturbed while

the OGLE light curve is not, implies (as in the above binary-
source analysis) that the source passes on opposite sides of the
lens (+- or-+ solutions). The preference of -+( ) in Table 2
makes it the best solution.
We consider four different topologies obeying the above

constraints. First, <s 1 with the source (seen by Spitzer)
passing between the two triangular caustics for this topology.
Second, <s 1 with the source passing outside one of these
caustics. Third, >s 1. For each topology, we insert a series of
seed solutions as a function of q and allow all parameters to
vary. We find that the first and the third topologies never match

Figure 6. Planet sensitivity results of OGLE-2015-BLG-0448. The sensitivity as a function of two parameters, S q s,( ), is shown on the left panel, and on the right is
shown the integrated sensitivity S(q) when a flat distribution of s in slog is assumed. In both panels, we show the sensitivities of the two solutions, -+( ) (solid) and
(−−) (dashed).

Figure 7. c2 distributions of simulated OGLE-2015-BLG-0448 light curves with a = ´ -q 1.7 10 4 planet placed at different positions (x, y). The left panel shows the
result for the (−−) solution, and the right panel shows that for the -+( ) solution. The black/red lines indicate the source trajectories as seen from the Earth/Spitzer.
The lens is placed at (0, 0), and the position of the tentative planet is shown as a filled gray dot. Note that the tentative planet could only be detected in the -+( )
solution.
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the observed morphology of the Spitzer light curve because
their relative demagnification zones do not align to the relative
“dip” in the Spitzer light curve at about ¢ =HJD 7200. The
second topology always converges to the same solution, which
we present in Figure 8. The model Spitzer light curve is shown
in Figure 2 by a green line. The single lens parameters are
consistent with the -+( ) solution in Table 2:
=t 7213.161 140 ( ), = -u 0.0870 100 ( ), =t 61.16 16 dE ( ) ,

p = 0.1140 12NE, ( ), p = -0.1088 10EE, ( ), and
=F F 0.002 11b base, OGLE ( ). The additional binary-lens para-

meters are: a = 189 .71 25( ), =s 0.7870 50( ), and
= ´ -q 1.70 32 10 4( ) . The c =dof 209.7 3312 is better by

c = 127.72 than the point-lens solution, and better by
cD = 492 than the double-lens +-( ) solution. We note that

even the best-fitting model does not remove all the systematics
seen in the Spitzer residuals.

The light curve lacks a close approach to the caustics, which
is uncommon among published microlensing planets (Zhu
et al. 2014). Without the caustic approach, we are unable to
constrain the source size relative to qE. We note that Yee et al.
(2013) found a planetary signal below the reliability threshold
in MOA-2010-BLG-311 event that also lies close to a globular
cluster (NGC 6553 in that case).
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