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ABSTRACT

Observations of accretion disks around young brown dwarfs (BDs) have led to the speculation that they may
form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects
around BDs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios
and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the
discovery of a planetary-mass object orbiting a field BD via gravitational microlensing, OGLE-2012-BLG-0358Lb.
The system is a low secondary/primary mass ratio (0.080 ± 0.001), relatively tightly separated (∼0.87 AU) binary
composed of a planetary-mass object with 1.9 ± 0.2 Jupiter masses orbiting a BD with a mass 0.022 M�. The
relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk
around the BD host in a manner analogous to planets.
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1. INTRODUCTION

Brown dwarfs (BDs) are sub-stellar objects that are too low
in mass to sustain hydrogen fusion reactions in their cores.
Although still a matter of debate, the most popular theory about
the origin of BDs is that they form via direct collapse, similar to
stars, and perhaps aided by turbulent fragmentation (see Luhman
2012 for a review). This theory is supported by observational
evidence showing that several medium-sized BDs are girdled
by disks of material (Luhman et al. 2005; Apai et al. 2005;
Ricci et al. 2012). The existence of accretion disks around these
failed stars naturally leads to the speculation that BDs may also
harbor planetary systems analogous to those found in abundance
around stars.

There have been several detections of planetary-mass objects
around BDs: 2MASS 1207-3932B with MB ∼ 4 MJ (Chauvin
et al. 2004) and 2MASS 0441-2301B with MB ∼ 7.5 MJ
(Todorov et al. 2010). However, these systems have relatively
large mass ratios of q ∼ 0.16 for 2MASS 1207-3932 and
q ∼ 0.25–0.5 for 2MASS 0441-2301, more akin to binary stellar
systems. Furthermore, they have relatively large separations
(∼15 AU for 2MASS 0441-2301 and ∼45 AU for 2MASS 1207-
3932), likely near or beyond the outer edges of the accretion
disks observed around BDs (Luhman et al. 2007; Ricci et al.
2012, 2013). Therefore, it seems unlikely that these companions
formed from the protoplanetary disk material via either of the
popular giant planet formation mechanisms of core accretion
(Pollack et al. 1996) or disk fragmentation (Kuiper 1951;
Cameron 1978; Boss 1997; Durisen et al. 2007). Rather, these
are more likely to have formed in the same way as stellar binaries
through the process of gravitational fragmentation of massive
primordial disks (Lodato et al. 2005). Thus, according to a
classification system based on their formation, they are not bona
fide planets.

In this paper, we report a microlensing discovery of a tight,
low-mass-ratio planetary-mass object orbiting an old field BD
that we suggest may have formed in a protoplanetary disk.
Microlensing is the astronomical phenomenon wherein the
brightness of a star is magnified by the bending of light due
to the gravity of an intervening object (lens) positioned between
the background star (source) and an observer. This discovery
was possible, despite the extremely low luminosity of the BD,
because the lensing phenomenon occurs regardless of the lens
brightness.

2. OBSERVATION

The BD planetary system was discovered in the microlens-
ing event OGLE-2012-BLG-0358. The event occurred in the
2012 observing season on a star located in the Galactic
bulge field with equatorial coordinates (R.A., decl.)2000 =
(17h42m46.s77,−24◦15′39.′′6), which corresponds to the Galac-
tic coordinates (l, b)2000 = (3.◦65, 2.◦99). It was first discov-
ered by the Optical Gravitational Lensing Experiment (OGLE;
Udalski 2003) group in 2012 April. During its early phase, the
light curve of the event appeared to be a high-magnification
event produced by a single mass. Since high-magnification
events are prime targets for planet detections, the event was ad-
ditionally observed by other groups, including the Microlensing

31 The OGLE Collaboration.
32 The MOA Collaboration.
33 The μFUN Collaboration.
34 The RoboNet Collaboration.

Table 1
Telescopes

Group Telescope

OGLE 1.3 m Warsaw, Las Campanas, Chile
MOA 0.6 m Boller & Chivens, Mt. John, New Zealand
μFUN 1.3 m SMARTS, Cerro Tololo Inter-American (CTIO), Chile
μFUN 0.4 m Auckland, New Zealand
μFUN 0.36 m Klein Karoo Observatory (KKO), South Africa
μFUN 0.3 m Perth Extrasolar Survey Telescope (PEST), Australia
μFUN 0.4 m Turitea, New Zealand
RoboNet 2.0 m Faulkes North Telescope (FTN), Hawaii, USA
RoboNet 2.0 m Faulkes South Telescope (FTS), Australia
RoboNet 2.0 m Liverpool Telescope (LT), Canary Islands, Spain

Follow-Up Network (μFUN; Gould et al. 2006), Microlensing
Observations in Astrophysics (MOA; Bond et al. 2001; Sumi
et al. 2003), and RoboNet (Tsapras et al. 2009). As the event
approached its peak, it was noted that the light curve deviated
from a standard single-lens light curve and the anomaly became
obvious as the light curve peaked again five days after the first
peak. Continued observations by the OGLE group revealed that
the event produced another extended weak bump. In Table 1,
we list the telescopes used for observation.

In Figure 1, we present the light curve of the event. It is
characterized by two strong peaks centered at Heliocentric
Julian Date (HJD) ∼ 2,456,537.5 and 2,456,542.5 and an
extended weak bump centered at HJD ∼ 2,456,065. A strong
peak in a lensing light curve occurs when a source star
approaches close to or crosses the tip of a caustic produced
by a lens composed of multiple objects. The caustic represents
the envelope of light rays refracted by a curved surface and it is
commonly visible as a curved region of bright light appearing
when light shines on a drinking glass. For a gravitational lens
composed of two masses, caustics form a single or multiple sets
of closed curves, each of which is composed of concave curves
that meet at cusps.

3. MODELING

With the signature of lens multiplicity, we conduct binary-
lens modeling of the observed light curve. A basic description
of a binary-lens light curve requires seven lensing parameters.
Three of these parameters describe the lens–source approach,
including the time of the closest source approach to a refer-
ence position of the binary lens, t0, the separation between the
source and the reference position, u0 (normalized by the an-
gular Einstein radius θE), and the timescale for the source to
cross θE (Einstein timescale tE). The Einstein ring denotes the
image of a source in the event of perfect lens–source align-
ment, and its radius is commonly used as the length scale of
lensing phenomena. Another three lensing parameters describe
the binary nature of the lens, including the projected separa-
tion, s (normalized by θE), the mass ratio, q, between the bi-
nary components, and the angle between the source trajectory
and the binary axis, α (source-trajectory angle). The last pa-
rameter is the normalized source radius ρ∗ = θ∗/θE, where
θ∗ is the angular source radius. This parameter is needed to
describe precisely the parts of a lensing light curve involved
with caustic crossings or approaches of the source during which
the lensing light curve is affected by the finite size of the
source star. In our modeling of finite-source effects, we addi-
tionally consider the limb-darkening variation of the source star

2



The Astrophysical Journal, 778:38 (6pp), 2013 November 20 Han et al.

Figure 1. Light curve of the microlensing event OGLE-2012-BLG-0358. The lower two panels show the residuals from the best-fit standard binary-lens model and
from the model considering the parallax effect. The letters after the individual telescopes represent the pass bands of observation.

(A color version of this figure is available in the online journal.)

surface by modeling the surface brightness profile as a standard
linear law.

We search for a solution of lensing parameters that best de-
scribes the observed light curve by minimizing χ2 in the param-
eter space encompassing wide ranges of binary separations and
mass ratios. For χ2 minimization, we use the Markov Chain
Monte Carlo method. In order to properly combine data sets
obtained from different observatories, we readjust photometric
errors of the individual data sets first by adding a quadratic
error term so that the cumulative distribution of χ2 ordered
by magnifications matches a standard cumulative distribution
of Gaussian errors and then by rescaling errors so that χ2 per
degree of freedom becomes unity for each data set. We eliminate
data points with large errors and obvious outliers to minimize
their effect on modeling.

From the initial search for solutions obtained from modeling
based on the standard binary-lensing parameters (standard
model), we find a solution of a binary lens with a projected
separation s ∼ 1.7 and a mass ratio q ∼ 9.8. See Table 2 for
the complete solution. Although the model describes the main
feature of the two strong peaks, it is found that there exist long-
term residuals in the wings of the light curve, including the
extended weak bump as shown in the bottom panel of Figure 1.
This suggests the need to consider higher-order effects.

Several causes of long-term deviations in lensing light curves
exist. The first cause is the change of the observer’s position
caused by the orbital motion of the Earth around the Sun (Gould
1992; Alcock et al. 1995). This “parallax effect” causes the
source trajectory to deviate from rectilinear, resulting in long-
term deviations. The second is the positional change of the lens
caused by the orbital motion of the binary lens (Dominik 1998;
Albrow et al. 2000; Bennett et al. 2010; Penny et al. 2011;
Shin et al. 2011, 2012; Skowron et al. 2011). In addition to

causing the source trajectory to deviate from rectilinear, the “lens
orbital effect” causes further deviation in lensing light curves
by deforming the caustic over the course of the event. The last
cause of the deviation is the change of the source position caused
by its orbital motion, if the source is a binary (Han & Gould
1997; Dominik 1998). Since this affects lensing light curves in
a way similar to the parallax effect, it is often referred to as the
“xallarap effect,” which is parallax spelled backward.

Considering the parallax effect requires two parameters, πE,N

and πE,E , which represent the two components of the lens
parallax vector πE projected onto the sky along the north and
east equatorial coordinates, respectively. The magnitude of the
parallax vector corresponds to the relative lens–source parallax,
πrel = AU(D−1

L −D−1
S ), scaled to the Einstein radius of the lens,

i.e., πE = πrel/θE (Gould 2004). To first order approximation,
the lens orbital motion is described by two parameters, ds/dt
and dα/dt , which represent the change rates of the normalized
binary separation and the source-trajectory angle, respectively
(Albrow et al. 2000). Modeling the xallarap effect requires five
parameters: the components of the xallarap vector, ξE,N and
ξE,N , the orbital period, P, inclination, i, and the phase angle,
ψ , of the source orbital motion. The magnitude of the xallarap
vector, ξE, corresponds to the semi-major axis of the source’s
orbital motion with respect to the center of mass normalized by
the projected Einstein radius onto the source plane (Dong et al.
2009).

4. RESULTS

We test models considering the higher-order effects and the
results are summarized in Table 2. By comparing the results,
our findings are as follows. First, it is found that the parallax
effect substantially improves the fit as shown by the residuals
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Table 2
Lensing Parameters

Parameters Model

Standard Parallax (u0 > 0) Parallax (u0 < 0) Orbit + Parallax Xallarap (P = 1 yr)

χ2/dof 2347.81/1592 1598.22/1590 1596.24/1590 1595.17/1588 1601.53/1588
t0 (HJD′) 6040.24 ± 0.01 6040.33 ± 0.01 6040.33 ± 0.01 6057.49 ± 0.10 6040.33 ± 0.01
u0 0.108 ± 0.001 0.098 ± 0.001 −0.098 ± 0.001 −0.832 ± 0.002 0.098 ± 0.001
tE (days) 24.38 ± 0.07 26.47 ± 0.11 26.46 ± 0.11 25.64 ± 0.08 26.46 ± 0.12
s1 1.687 ± 0.002 1.696 ± 0.003 1.696 ± 0.003 1.700 ± 0.002 1.696 ± 0.003
q1 (10−2) 9.810 ± 0.071 12.531 ± 0.154 12.486 ± 0.159 12.281 ± 0.118 12.487 ± 0.179
α 5.544 ± 0.001 −0.721 ± 0.001 0.722 ± 0.001 −5.427 ± 0.002 5.562 ± 0.001
ρ	 (10−3) 2.64 ± 0.01 2.36 ± 0.01 2.37 ± 0.01 2.38 ± 0.01 2.36 ± 0.01
πE,N · · · −1.42 ± 0.06 1.49 ± 0.07 1.45 ± 0.03 · · ·
πE,E · · · −0.34 ± 0.04 −0.19 ± 0.06 −0.38 ± 0.02 · · ·
ds/dt (yr−1) · · · · · · · · · 0.05 ± 0.01 · · ·
dα/dt (yr−1) · · · · · · · · · −0.04 ± 0.01 · · ·
ξE,N · · · · · · · · · · · · −2.18 ± 0.03
ξE,E · · · · · · · · · · · · 0.19 ± 0.11
ψ (deg) · · · · · · · · · · · · 247.8 ± 2.0

 (deg) · · · · · · · · · · · · 10.3 ± 1.9

Notes. HJD′ = HJD−2,450,000. We note that the lensing parameters t0 and u0 are measured with respect to the center of the caustic
located on the planet side.

in Figure 1. We find that the improvement is Δχ2 ∼ 752
compared to the standard binary-lens model. Second, when
we additionally consider the lens orbital effect, on the other
hand, the improvement of the fit Δχ2 ∼ 1 is meager. Finally,
we find that considering the xallarap effect yields solutions
as good as the parallax solution for source orbital periods
P > 0.6 yr. This is expected because it is known that xallarap
effects can mimic parallax effects (Smith et al. 2003; Dong
et al. 2009). However, the xallarap solutions result in masses of
the source companion bigger than 3 M�. This contradicts the
upper limit set by the observed blended light unless the source
companion is a black hole and thus we exclude the xallarap
interpretation. Therefore, we conclude that the dominant effect
for the long-term deviation is the parallax effect. Finally, since
the source lies very near the ecliptic, it is subject to the “ecliptic
degeneracy,” which has almost identical parameters except
(u0, α, πE,N ) → −(u0, α, πE,N ) (Skowron et al. 2011).

In Figure 1, we present the best-fit model (parallax model in
Table 2) curve which is overplotted on the observed light curve.
In Figure 2, we also present the geometry of the lens system for
the best-fit solution. It is found that the lens consists of binary
components with a projected separation bigger than the Einstein
radius corresponding to the total mass of the binary. For such
a binary lens, there exist two sets of four-cusp caustics, where
one small set is located close to the heavier lens component
(primary) and the other bigger set is located toward the lower-
mass lens component (companion). The event was produced by
the source trajectory passing the tips of the caustic located on
the companion side. The strong peaks at HJD ∼ 2,456,537.5
and 2,456,542.5 were produced at the moments of the source
crossings over the caustic tips, while the extended weak bump
centered at HJD ∼ 2,456,065 was produced as the source passed
through the magnification zone of the primary lens. Despite the
relatively short time scale tE ∼ 26.5 days of the event, a clear
detection of the parallax effect was possible due to a combination
of the large value of the lens parallax and the good coverage of
the extended bump that continued for almost two months after
the main peaks.

Detecting the parallax effect is important for the deter-
minations of the physical lens parameters because the lens

Figure 2. Geometry of the lens system. The closed figures composed of concave
curves represent the caustic and the line with an arrow is the source trajectory.
M1 and M2 represent the binary lens components, where M1 is the heavier one.
Grayscale represents the lensing magnification where the brighter tone denotes
higher magnification. All lengths are scaled by the Einstein radius corresponding
to the total mass of the binary lens.

parallax πE is related to the mass and the distance to the lens by
Mtot = θE/(κπE) and DL = AU/(πEθE +πS), respectively. Here
κ = 4G/(c2AU), πS = AU/DS is the parallax of the source star,
and DS is the distance to the source star. The source is in the
Galactic bulge and thus its distance is known. Considering the
mass distribution of the Galactic bulge and the projected source
location, we estimate that DS = 7.60 kpc, corresponding to
πS = 0.132 mas.

For the full characterization of the physical parameters, it is
necessary to additionally determine the Einstein radius, which
is given by θE = θ∗/ρ∗. The normalized source radius ρ∗ is
measured by analyzing the caustic-crossing parts of the light
curve that are affected by finite-source effects. The angular
source radius θ∗ is estimated from the source type that is
determined based on its de-reddened color and brightness.
For this we first calibrate the color and brightness by using
the centroid of bulge giant clump as a reference (Yoo et al.
2004), for which the de-reddened brightness I0,c = 14.45
at the Galactocentric distance (Nataf et al. 2013) and color
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Table 3
Physical Parameters

Parameters Parallax Orbit+Parallax

(u0 > 0) (u0 < 0)

Total mass (M�) 0.024 ± 0.002 0.024 ± 0.002 0.024 ± 0.002
Primary mass (M�) 0.023 ± 0.002 0.022 ± 0.002 0.022 ± 0.002
Companion mass (MJ) 1.89 ± 0.19 1.85 ± 0.19 1.82 ± 0.16
Projected separation (AU) 0.89 ± 0.03 0.87 ± 0.03 0.86 ± 0.02
Distance (kpc) 1.79 ± 0.12 1.76 ± 0.13 1.73 ± 0.12
Height above plane (pc) 106 ± 7 106 ± 7
Velocity, rotation direction (km s−1) −2 ± 8 −59 ± 8
Velocity, vertical direction (km s−1) 17 ± 6 −16 ± 6

Figure 3. Location of the lensed source star in the color–magnitude diagram
(blue dot) relative to the centroid of the red clump (red dot). The magnitude and
color are the instrumental scale of the OGLE III data photometry.

(A color version of this figure is available in the online journal.)

(V − I )0,c = 1.06 (Bensby et al. 2011) are known. We
then translate V − I into V − K color by using the color–color
relations (Bessell & Brett 1988) and then find θ∗ using the
relation between the V − K and the angular radius (Kervella
et al. 2004). Figure 3 shows the location of the source star in
the color–magnitude diagram of stars in the same field obtained
by the OGLE III experiment. It is found that the source is a
K-type giant with an angular radius θ∗ = 6.89 ± 0.60 μas. The
estimated Einstein radius is θE = 0.29 ± 0.03 mas. Combined
with the measured Einstein timescale tE, the relative lens–source
proper motion is μ = θE/tE = 4.02 ± 0.37 mas per year.

In Table 3, we present the determined physical parameters of
the lens. Since the parallax solutions with u0 > 0 and u0 < 0
are degenerate, we present the physical parameters resulting
from both solutions. Similarly, we also present the parameters
resulting from the orbit+parallax solution. The mass of the
companion is twice that of the Jupiter. According to the best-fit
parallax model, the mass of the primary is 0.022 ± 0.002 M�.
This is firmly below the hydrogen-burning limit of 0.08 M�
and thus the primary is a BD. The lens is located at a distance
DL = 1.76±0.13 kpc from the Earth toward the Galactic center.
Then the projected separation between the lens components is

⊥ = sDLθE = 0.87 ± 0.03 AU.

We also show the height above the Galactic plane z and
the transverse velocity (vl, vb) in the directions of Galactic
rotation and Galactic north pole, respectively. To find the

latter two, we measure the source proper motion (μN,μE)S =
(−0.20 ± 0.65, 0.02 ± 0.65) mas yr−1 relative to the Galactic
bar, and correct for the bar proper-motion gradient (Gould &
Yee 2013). These kinematic variables are the only ones that
differ significantly between the two solutions resulting from the
ecliptic degeneracy with u0 > 0 and u0 < 0. However, both
sets of (vl, vb) as well as z are consistent with a lens age in the
range 1–10 Gyr, i.e., much older than BDs of this mass found
in imaging studies.

5. DISCUSSION

The properties of the OGLE-2012-BLG-0358L system are
relatively extreme compared to other binaries with BD hosts. In
particular, the separation is a factor ∼15 and ∼40 times smaller
than those of 2MASS 1207-3932 and 2MASS 0441-2301,
respectively, and the mass ratio of is a factor ∼2 and �3 times
smaller than the mass ratios of these systems. Systems with such
extreme properties may be difficult to form via conventional
binary BD formation mechanisms (e.g., Bate 2012), suggesting
an alternative scenario where the companion formed in the
protoplanetary disk of the host BD. Surveys for disks around
young BD have found some systems with inferred disk masses
up to and even slightly exceeding ∼MJ (Harvey et al. 2012),
although these are relatively rare and the inferred masses are
subject to considerable uncertainty. Such massive disks are
likely to be near the limit of stability (e.g., Lodato et al. 2005),
arguing for a gravitational instability formation scenario rather
than core accretion. On the other hand, the relatively close
separation may pose a challenge for gravitational instability.
Clearly, additional theoretical work is needed to explore the
viability of planet formation in BD protoplanetary disks, either
by the gravitational instability or core accretion mechanism. For
this it is essential to find more binaries with BD hosts in wide
ranges of mass ratios and separations.

Microlensing surveys for exoplanets are well-suited to detect
planetary companions to very faint, low-mass stars and old
BDs, systems which are difficult to discover via other methods.
The last two decades have witnessed tremendous progress in
microlensing experiments, which have enabled a nearly 10 fold
increase in the observational cadence, resulting in an almost 100
fold increase in the event detection rate. With this observational
progress, the number of BD events with precisely measured
physical parameters is rapidly increasing (Shin et al 2013; Choi
et al. 2013). Furthermore, a new survey based on a network
of multiple telescopes equipped with large format cameras is
planned to achieve an even higher cadence of more than 100
per day. Hence, starting from the system reported in this work,
many additional BD hosts will be surveyed via microlensing.
The discovery of additional close separation BD/planet systems
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with even more extreme mass ratio systems from these surveys
will provide important empirical constraints on the ubiquity and
mechanisms of planet formation around these hosts.
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