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BINARY MICROLENSING EVENT OGLE-2009-BLG-020 GIVES VERIFIABLE MASS,
DISTANCE, AND ORBIT PREDICTIONS
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ABSTRACT

We present the first example of binary microlensing for which the parameter measurements can be verified (or
contradicted) by future Doppler observations. This test is made possible by a confluence of two relatively unusual
circumstances. First, the binary lens is bright enough (I = 15.6) to permit Doppler measurements. Second, we
measure not only the usual seven binary-lens parameters, but also the “microlens parallax” (which yields the binary
mass) and two components of the instantaneous orbital velocity. Thus, we measure, effectively, six “Kepler+1”
parameters (two instantaneous positions, two instantaneous velocities, the binary total mass, and the mass ratio).
Since Doppler observations of the brighter binary component determine five Kepler parameters (period, velocity
amplitude, eccentricity, phase, and position of periapsis), while the same spectroscopy yields the mass of the
primary, the combined Doppler + microlensing observations would be overconstrained by 6 + (5 + 1) − (7 + 1) = 4
degrees of freedom. This makes possible an extremely strong test of the microlensing solution. We also introduce a
uniform microlensing notation for single and binary lenses, define conventions, summarize all known microlensing
degeneracies, and extend a set of parameters to describe full Keplerian motion of the binary lenses.

Key words: binaries: general – Galaxy: bulge – gravitational lensing: micro

1. INTRODUCTION

Gravitational microlensing is nowadays a well-established
method for discovering binary and planetary systems (e.g.,
Gould 2009; Gaudi 2011). By analyzing flux variations in
time, microlensing measures a wide range of system parameters
including the distance and mass of the binary, its orbital
and proper motion, as well as the mass ratio and separation
of its components (cf. Dong et al. 2009a; Bennett et al.
2010).

Previous studies of gravitational microlensing events have
had little or no possibility for post factum observational con-
firmation of derived system parameters, since usually the stars
involved in this one-time event are too faint and too distant to
be within reach of current astrometric or spectroscopic instru-
ments. Some exceptions come from astrometric confirmation
of the nature of a single lens event with direct imaging done
with Hubble Space Telescope (HST; Alcock et al. 2001; Gould
et al. 2004; Kozłowski et al. 2007). Also, in some cases it was
possible to take spectra of the microlensed source that confirm
the microlensing interpretation (Gaudi et al. 2008b). But the
fact of an event being caused by microlensing is the main sub-
ject of these tests rather than the values of previously derived
parameters. This does not mean that the microlensing measure-
ments have no tests. Indeed, there are many self-consistency
checks including the agreement of mass and distance with
the amount of light coming to us (e.g., Gaudi et al. 2008a;

47 Optical Gravitational Lens Experiment (OGLE).
48 Microlensing Follow-Up Network (μFUN).
49 Sagan Fellow.
50 Probing Lensing Anomalies NETwork (PLANET).
51 Microlensing Observations in Astrophysics (MOA) Collaboration.
52 Royal Society University Research Fellow.
53 RoboNet.

Bennett et al. 2010), as well as testing of the derived values of
the orbital parameters being consistent with bounded Keplerian
orbits (e.g., Sumi et al. 2010; Batista et al. 2011). The only
issue is the shortage of possibilities to verify the results with
independent or direct observations.

In this work, we present an analysis of one microlensing
event (OGLE-2009-BLG-02054) caused by a ∼1.1 M� binary
system passing near the line of sight to an ordinary red gi-
ant star. We derive system parameters using the same, stan-
dard methods that are applied to other binary and planetary
microlensing events. Because of the peculiarity of this event,
i.e., it is caused by a relatively close by (≈1.1 kpc) and bright
(I = 15.6) binary star, there is a possibility of direct verifi-
cation of the derived parameters with follow-up spectroscopic
measurements.

The importance of the nearby lenses was discussed by
Paczyński (1995) and Di Stefano (2008a, 2008b); these are
mainly important based on their expected high proper motions
that increase probability of lensing in a given time and make it
easier to find them on the sky in advance of the lensing event.
In this paper, we are making use of a significant brightness
of the lens that allow not only photometric follow-up but
also spectroscopic ground observations to confirm the lens
parameters.

The data gathered on this event are described in Section 2. The
fitting of the microlensing model to the light curve is presented
in Section 3, and the physical parameters of the system are
calculated in Section 4. In Section 5 we discuss the results and,
in particular, in Section 5.3 we present how the microlensing
solutions can be tested by radial velocity (RV) measurements.
In our conclusions (Section 6), we advocate for RV follow-
up observations to confirm the nature of the event and its

54 http://ogle.astrouw.edu.pl/ogle3/ews/2009/blg-020.html
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parameters, which constitute a general test of the microlensing
method, in particular the accuracy of the parameters currently
being derived for microlensing planets.

In Appendix A we present microlensing parameters together
with all required conventions, introduce a uniform microlens-
ing notation, extend the work of Gould (2000) by introduc-
ing parameters describing full Keplerian motion of the lens
components, and review symmetries known in microlensing.
In Appendix B we derive the transformation between the
microlensing and Keplerian orbit parameters.

2. OBSERVATIONAL DATA

2.1. Collection

On 2009 February 15, Heliocentric Julian Date (HJD)
∼ 2454878, the Optical Gravitational Lensing Experiment
(OGLE) team announced the ongoing microlensing event
OGLE-2009-BLG-020 detected by the Early Warning System
(EWS)55 and observed on the 1.3 m Warsaw Telescope in Las
Campanas Observatory in Chile. The event was also monitored
by the Microlensing Observations in Astrophysics (MOA) 1.8 m
telescope at Mt. John University Observatory in New Zealand.
On HJD′ ∼ 4915 (HJD′ = HJD − 2450000), it could be seen
that the light curve was deviating from the standard Paczyński
(1986) model, and follow-up observations by other telescopes
began: First with the 2.0 m Faulkes South (FTS) telescope in
Siding Spring, Australia, and the 2.0 m Faulkes North (FTN)
telescope in Haleakala, Hawaii, operated by RoboNet56; the
36 cm telescope at Kumeu Observatory,57 New Zealand, and
the 36 cm telescope at Bronberg Observatory, Pretoria, South
Africa, as a part of Microlensing Follow-Up Network (μFUN).58

Then, shortly before the first caustic crossing occurred (HJD′
∼ 4917.3), observations began on the 1 m telescope on Mt.
Canopus belonging to University of Tasmania (part of PLANET
Collaboration) and the 36 cm telescope in Farm Cove Ob-
servatory59 (also μFUN). Essential data near highest magni-
fication (HJD′ ∼ 4917.6, 27 March 27) were gathered by the
Bronberg telescope. During the caustic exit (HJD′ ∼ 4917.75),
there were observations started on the SMARTS 1.3 m Cerro
Tololo Inter-American Observatory (CTIO) and the 40 cm tele-
scope in Campo Catino Austral Observatory (CAO),60 Chile.
Some data were gathered by other observers but too short cov-
erage of the event, or, in some cases, big error bars, prevented
us from including these in this analysis. Intense monitoring of
the event was performed until HJD′ ∼ 4920.

The whole light curve consists of nine years of data with
121 days during the course of the visible magnification, of which
5 days constitute intense follow-up observations. The OGLE
telescope performed observations in V and I bands, and the CTIO
telescope in V, I, and H bands, which permit measurements of
the color of the magnified source star. Together we have 5333
data points in the light curve with 2247 during the course of the
magnification event.

We take the OGLE-III V- and I-band light curves from the
projects’ final data reductions (Udalski et al. 2008) and calibrate
against the Galactic bulge photometric maps (Szymański et al.

55 http://ogle.astrouw.edu.pl/ogle3/ews/ews.html
56 http://robonet.lcogt.net/
57 http://kumeu.blogspot.com/
58 http://www.astronomy.ohio-state.edu/∼microfun/
59 http://www.farmcoveobs.co.nz/
60 http://www.campocatinobservatory.org/

2011), so that the OGLE magnitudes reported in this paper are
standard V (Johnson) and I (Cousins) magnitudes.

The Bronberg data were reduced using MicroFUN’s image
subtraction pipelines based on Woźniak (2000). The MOA data
were reduced using the survey image subtraction pipeline (Bond
et al. 2001). CTIO, CAO, FCO, and Kumeu data were reduced
using the DoPHOT package (Schechter et al. 1993). The UTAS,
FTN, and FTS data were reduced using pySIS3 (Bramich 2008;
Albrow et al. 2009).

We remove the effects of a differential extinction from the
unfiltered Bronberg data by using light curves of non-variable
field stars that have color similar to that of the source (for details
see Dong et al. 2009a).

The CTIO telescope’s camera, ANDICAM, takes simultane-
ous exposures in the H and I bands. Because the data quality
in the H band is lower than that in the I band, we include only
the latter into the microlensing fit. However, we use the H-band
data to calculate the (I − H ) color of the source. To do so,
we cross-match the H-band data with the Two Micron All Sky
Survey (2MASS) catalog61 and calibrate neighboring stars of
the lens/source to 2MASS H-band magnitudes.

2.2. Preparation

As the calculation of microlensing magnification is very time-
consuming, we bin the data to speed up the fitting procedure. On
every part of the light curve and for every individual observatory,
we carefully choose the number of bins and their start and
end points depending on the local slope of the light curve and
specifically avoid incorporating seasonal gap (for wide bins)
and daily gaps (for short bins) into any bin. Before the actual
binning we fit straight lines to the points in the planned bins
and check that the points look consistent with the lines. We
also check that the slopes for adjacent bins are comparable.
The 3σ outliers from the straight line fits are marked by the
program as well as all data points with observational error
bars bigger than five times the median of the error bars of
nearby points. We remove outliers after visual inspection. If the
structure is seen inside the planned bin that might be interpreted
as a real deviation, we redesign bins in this region. Our human
supervised binning procedure coupled with extensive use of
helper algorithms yields 374 binned data points in total.

We rescale the error bars to have χ2
d /dof ∼ 1 for each separate

data set (usually coming from different observatories). This is an
iterative process wherein we use our best-fit model to evaluate
χ2

d,i values for each of the data points (where d enumerates
data sets and i is the index of the given data point in this set),
then based on these values we find parameters needed to rescale
the error bars. After rescaling we repeat the fitting procedure,
evaluate new χ2

d,i values, and find the new values of rescaling
parameters.

The error bar rescaling formula is given by σ new
d,i = Yd

√
σ 2

d,i+S2
d ,

where σd,i and σ new
d,i are the uncertainties before and after

rescaling and the coefficients Yd and Sd are the parameters we
find in the following way. For each data set d, we sort all points
by the magnification given by the microlensing model. Then
we construct the cumulative distribution of χ2

d,i as a function of
the sorted index. The goal is to choose Sd to make the cumulative
distribution of χ2

d,i a straight line. Then we can choose the scale
Yd to match the requirement χ2

d /dof ∼ 1.

61 http://www.ipac.caltech.edu/2mass/overview/access.html.
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Figure 1. Light curve of OGLE-2009-BLG-020. Different colors denote the 12 data sets and the solid line shows the best microlensing model. The inset presents the
part of the light curve featuring both caustic crossings.

If we see some systematic variations in the residuals from the
best-fit model that are unlikely to be caused by the microlensing
phenomena, we investigate whether the deviations are supported
by more than one data set or whether it is likely that observations
were affected by high airmass or large seeing. If so, we remove
these data as outliers.

Figure 1 presents the light curve of the event. All data
points are aligned to the best-fit microlensing model. The
inset shows the portion of the light curve during highest
magnification—when the source is crossing the caustics.

3. MICROLENSING MODEL

To explain the observed variation in brightness, we fit a binary
microlensing model to the light curve. In this scenario, the
light from a distant source is bent by the binary star (lens)
crossing near the light of sight, causing apparent brightening of
the source.

In this work, we closely follow the notation presented by
Gould (2000), where Dl denotes the distance to the lens, Ds
the distance to the source, M the total mass of the lens, rE
the Einstein radius, and θE the angular Einstein radius. In
Appendix A, we propose an extension of this notation to describe
full orbital motion of the binary lens.

3.1. Parameterization

The initial mathematical model used to describe this event
is constructed using seven parameters: the mass ratio of the
lensing binary (q); the projected separation of its components
(s0) in units of the Einstein radius; the angle of the lens–source
relative motion projected onto the sky plane with respect to the
binary axis (α0); the Einstein crossing time (tE), i.e., the time
required for the lens to travel a distance of one Einstein radius;
the time of the closest approach of the adopted center of the
lens to the source (t0); the lens–source separation at this time
in units of the Einstein radius (u0); and the source radius in
the same units (ρ). See Appendix A for conventions and full
definition of all parameters. We define the primary/secondary
as the heavier/lighter component, respectively.

In addition, there are two parameters for each observatory that
connect the microlensing magnification with the instrumental
fluxes in a given band. These are the values of the source flux
and an additional flux not being magnified but observed in the
same direction in the sky (a blend). If there is any light coming
from the lens, it will be included in this blend.

To find a microlensing model we use the method developed by
S. Dong and described in Dong et al. (2006) and its modification
in Dong et al. (2009b, Section 3).

4
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We introduce a few modifications. For example, we calculate
the “caustic width” (w) used for the (w, q) grid of lens
geometries when searching for initial solutions. Instead of the
planetary regime (q � 1), we are now in a stellar binary regime,
i.e., q ∼ 1. We can calculate the shorter diameter of the central
caustic with the equation

w = 4qs2

(1 + q)2
, (1)

based on the work by An (2005). Unlike the formula of Chung
et al. (2005, Equation (12)) used by Dong et al. (2009b), the
above formula is useful for any mass ratio, although it is accurate
only to about 20% for lens separations 0 < s < 0.5 and accurate
to a factor of 2 for s < 0.7 and stellar mass ratios (above s ∼ 0.7,
we are close to intermediate caustic geometry with resonant
caustic). Usually, a much better accuracy is not required as one
uses the caustic dimensions as a basic scale for further searches,
although for our event’s geometry and chosen parameterization
a more accurate formula is beneficial.

We find that combining the ideas used in both formulae
gives us much more accurate results. Explicitly, we divide
Equation (12) of Chung et al. (2005) by the factor (1 + q)2,
making it usable for any mass ratio. This modified recipe is
good to about 0.5% for binary separations 0 < s < 0.5 and to
about 25% for 0.5 < s < 0.7, as we get closer to the resonant
caustic regime. The final formula by which we calculate the
shorter diameter of the central caustic is derived to be

w = 4q|sin3φc|
(1 + q)2(s + s−1 − 2 cos φc)2

, (2)

with the parameter φc given by Equation (10) of Chung et al.
(2005).

For wide lenses (e.g., s > 2 for stellar mass ratios),
Equation (2) could be multiplied by

√
1 + q to produce an esti-

mate of the short diameter of the caustic that is usable for our
purposes but is a less accurate approximation.

The (1+q)2 factor can be used as well to modify Equation (11)
of Chung et al. (2005) formula for calculating the longer
diameter of the central caustic. Although it is usable for stellar
binary mass ratios, it is accurate only to the factor of 2 for
0 < s < 0.5 (5 for 0.5 < s < 0.7).

In our method, we also modify the parameterization of the
Markov chain Monte Carlo (MCMC) χ2 minimization by using
(u0/w) rather than u0 (impact parameter). When we observe a
near-cusp caustic crossing or cusp approach in the light curve,
we can expect that the value of (u0/w) will correlate less with
the changes in lens geometry given by q and s. This is the case
in our model for which the dependence of u0 on q and s is strong
but nearly vanishes when u0 is divided by w.

3.2. Searching for Solutions

First, we fit a seven-parameter microlensing model by (after
Dong et al. 2009b) creating a broad grid in three parameters
(log q, log w, α) and performing minimization in the remaining
four parameters, which are chosen to be t0, (u0/w), teff(≡
u0tE), and t∗(≡ ρtE). The values of the fluxes (two for each
observatory) are calculated analytically with the least-squares
method. With this standard parameterization, we are not able to
find a satisfactory solution, in a sense where all data sets can be
aligned in a coherent way.

We then extend our model by taking into account the Earth’s
orbital motion during the course of the event. This so-called

parallax effect is described with two additional parameters.
We use the geocentric parallax formalism (An et al. 2002;
Gould 2004), wherein we utilize πE = (πE,N , πE,E) as model
parameters (see Appendix A.2 for definition). The parameters
α0, t0, and u0, which previously described a straight trajectory
of the lens in front of the source, now describe the trajectory we
would see if the Earth’s velocity was constant throughout the
course of the event and not subject to gravitational acceleration.
For the value of this constant velocity, we take the real Earth
velocity at some fiducial time t0,par ≡ 4917.52, and since the
shift between real source position and the straight trajectory is
by definition equal to zero at this chosen time, it is convenient
to fix it close to some important features of the light curve; in
our case, it is a time between the caustic crossings.

By performing minimization in a similar manner as previ-
ously, but with a nine-parameter model, we find a solution ca-
pable of explaining the shape of the observed variability. The
parameters of this model are gathered in Table 1. We have
tested whether there are other solutions emerging from known
degeneracies, and we find the corresponding solution through
the binary ecliptic degeneracy only (see Equation (16)), with the
positive u0 solution, being slightly preferred. Our best model has
a binary separation smaller than the Einstein radius. We find no
solution with a “wide” geometry given by the s ↔ s−1 degen-
eracy. This degeneracy, which is very important for planetary
mass ratios, is broken in this stellar binary case (q = 0.27).

The magnitude of the parallax (πE) together with the angular
size of the Einstein radius (θE) yields the total mass of the lens
(M) and a distance to the lens (Dl) (e.g., An et al. 2002). After
Gould (2000), we have

Ml = θE

κπE
, κ ≡ 4G/(c2 AU) ≈ 8.1 mas M�−1, (3)

Dl = AU/πl, πl = θEπE + πs, (4)

where we derive θE from the source radius (ρ) in units of rE and
the measurement of the angular radius of the source in physical
units (θ∗; see Section 4.1.1) with the equation: θE = θ∗/ρ. We
assume the source to be in the Galactic Bulge at Ds = 8 kpc,
and thus the source parallax is πs = 0.125 mas.

The total mass derived from the best “parallax-only” solution
is 0.84 M� and the distance is 0.61 kpc. This is in rough
agreement with the position of the lens (assuming that all
blended light is coming from the lens) on the color–magnitude
diagram (CMD) and the assumption that the binary companions
belong to the main sequence.

However, there are still some structures in the residuals of the
fit, which we hope will be reduced by extending our model by
introducing new parameters describing the orbital motion of the
lens.

3.3. Expanding the Model

3.3.1. Linear Orbital Motion Approximation

The canonical way of introducing orbital motion of the lens
into the microlensing model is to add two parameters describing
instantaneous velocities in the plane of the sky of the secondary
binary component relative to the primary. As we expect that
the duration of the binary microlensing perturbation to be only
a fraction of the orbital period, the assumption is that these
velocities do not change much during the course of the event.
Thus, one keeps them constant and uses a linear approximation
of the position of the lens components as a function of time:

5
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Table 1
Best-fit Model Parameters

Parameter Unit Parallax-only Parallax + 2 par. Motion Parallax + Full Orbit Parallax + Full Orbit
(with Priors)

χ2/dof 370.29/361 352.7/359 344.03/357
fit parameters:

t0 (HJD) 4917.266 ± 0.009 4917.253+0.011
−0.009 4917.202+0.059

−0.028 4917.252+0.016
−0.009

u0/w 0.4295 ± 0.0001 0.42921+0.00026
−0.00009 0.42963+0.00060

−0.00030 0.42942 ± 0.00030

teff (days) 4.517 ± 0.009 4.720 ± 0.037 4.92+0.10
−0.12 4.708+0.053

−0.032

t∗ (days) 0.1126 ± 0.0003 0.11643 ± 0.00084 0.1182 ± 0.0010 0.11595 ± 0.00071
α (◦) 188.97 ± 0.11 189.06 ± 0.11 189.59+0.55

−0.26 189.08 ± 0.14

πE,N 0.45 ± 0.02 −0.11+0.10
−0.12 −0.5 ± 0.12 −0.022 ± 0.086

πE,E 0.142 ± 0.004 0.1468+0.0046
−0.0064 0.224+0.019

−0.069 0.149 ± 0.010

γ⊥ (yr−1) · · · 2.78+0.41
−0.47 4.2+0.3

−0.5 2.3+0.5
−0.3

γz (yr−1) · · · · · · 1.9 ± 4.1 1.5 ± 1.0

sz (rE) · · · · · · 0.05+0.17
−0.10 0.0 ± 0.6

log q −0.580 ± 0.002 −0.5656 ± 0.0053 −0.5612 ± 0.0075 −0.5637 ± 0.0062

log w −0.889 ± 0.004 −0.8526 ± 0.0094 −0.8420+0.007
−0.015 −0.8410 ± 0.0080

γ‖ (yr−1) · · · 0.12+0.08
−0.04 0.34 ± 0.20 0.10 ± 0.11

derived:
s0 (rE) 0.4150 0.4268 0.4308 0.4294
q 0.263 0.272 0.275 0.273
tE (days) 81.4 78.3 79.5 76.9
θE (mas) 3.22 3.00 2.97 2.95
u0 (rE) 0.0555 0.0603 0.0621 0.0613

Notes. Best-fit parameters for three microlensing models with different treatment of lens orbital motion: (1) with the lens as a static binary, (2) orbital motion of
the lens projected onto the sky is approximated by linear changes in time, and (3) orbital motion of the lens is modeled using a full Keplerian orbit. We give the
values of the microlensing fit parameters together with 1σ limits as obtained from MCMC. The first three sets of parameters are derived from an MCMC run using
only likelihoods from the value of χ2 with no priors. (4) The solution including priors (on the orbital parameters and on the properties of the lens) lies in the 2.2σ

confidence limit derived from the light curve χ2 only. (All parameters represent positive u0 solutions—the top region in Figure 5—which is slightly preferred. To
obtain parameters for negative u0 solutions, use formula (16) from Section 5.1).

α(t) = α0 − γ⊥(t − t0,par) and s(t) = s0 + ṡ(t − t0,par) =
s0(1 + γ‖(t − t0,par)). Examples of microlensing events modeled
using this approximation can be found in Albrow et al. (2000),
Jaroszyński et al. (2005), Dong et al. (2009a), Ryu et al. (2010),
and Hwang et al. (2010). More discussion on these parameters
can be found in Appendix A.4.

We fit our light curve with this, now 11-parameter, model
and notice significant improvements in the goodness of fit (χ2

changed from 370.29 to 352.70). This indicates that orbital
motion is an important effect in this event. The fit also reveals a
very strong degeneracy between two model parameters, namely
πE,N and lens angular velocity (γ⊥). We discuss this further in
Section 4.2.

In general, the apparent source trajectory, projected on the
plane of the sky, can differ from a straight line in the presence of
acceleration acting on one of the three components of the system
(observer, lens, and source). The parallax effect, in the first
approximation, is the acceleration acting on the observer, the
lens orbital motion is the acceleration of the lens components,
and finally, there can be acceleration acting on the source; for
example, if the source happens to be in a binary system—this
effect is called “xallarap.” We do not investigate the “xallarap”
effect in this paper. Based on the independent evidence that the
lens in close by (∼1 kpc) that comes from the measurement
of the lens brightness (Section 4.2.1), we note that in order to
produce the same apparent trajectory deviations that we see from
acceleration acting on the lens, the acceleration acting on the
source would need to be ∼8 times larger. In order for the source
acceleration to be important in this event, it should be about the

value of the Earth’s acceleration; however, we expect that the
number of binary companions able to invoke such acceleration
would be only of an order of a few percent (Duquennoy & Mayor
1991).

3.3.2. Full Keplerian Orbit

Although the linear approximation of the lens motion works
well for a large subset of microlensing events, in order to allow
comparison with the RV measurements it is profitable to use the
full Keplerian orbit parameterization. In addition to being more
accurate, the additional advantage of this approach is to avoid all
unbound orbital solutions (with eccentricity �1) and to enable
the introduction of priors on the values of orbital parameters
directly into MCMC calculations, if one decides to adopt that
approach.

We describe the orbit of the secondary component relative to
the primary by giving three Cartesian positions and three ve-
locities at one arbitrarily chosen time (t0,kep). For convenience
we utilize the same time (t0,par) used for calculating the par-
allax shifts (t0,kep = t0,par = 4917.52). As described above
(Section 3.2), our extended microlensing model (with parallax
parameters) carries information about the mass ratio, the total
mass of the lens, and the physical scale in the lens plane, so
together with the six instantaneous phase-space coordinates it
comprises a complete set of system parameters (except systemic
RV). This, for example, allows us to calculate the relative RV at
any given time.

Let rx ≡ s0 DlθE be the projected binary separation in
physical units. We define the instantaneous orbital velocities
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after Dong et al. (2009a, see their Appendix) as rxγ , where
rxγ‖ and rxγ⊥ are the instantaneous velocities in the plane of
the sky, parallel and perpendicular to the projected binary axis,
respectively, and rxγz is the relative RV, i.e., the relative velocity
of the two components perpendicular to the plane of the sky. We
note that γ⊥ is the instantaneous angular velocity in the plane
of the sky and γ‖ is equal to ṡ/s0. We use the convention that
γz > 0 for movement toward the observer; this is opposite to the
convention usually used in RV measurements (see discussion in
Appendix A.5).

Without loss of generality, we set the Cartesian coordinate
system to have its first two axes in the plane of the sky, the
origin in the primary component of the lens, and to be rotated in
such a way that the first axis coincides with the binary axis at the
chosen time t0,kep. Then, the three-dimensional (3D) position of
the secondary at t0,kep can be described by the vector (s0, 0, sz)
and the 3D velocities described by (γ‖, γ⊥, γz), where we have
introduced one more parameter: the position along the line
of sight (sz) measured in units of rE. See Appendix A.5 for
conventions.

In all, there are now 13 microlensing parameters, in addition
to the 2nobs flux parameters, where nobs = 12 is the number
of observatories. As this is a full description of the system, it
is possible to calculate all properties in physical units as well
as standard Kepler parameters of the orbit—i.e., eccentricity
(e), time of periapsis (tperi), semi-major axis (a) and three Euler
angles: longitude of the ascending node (Ωnode), inclination (i),
and argument of periapsis (ωperi). Having those we can find the
exact position of the lens components at any given time, which
in turn specifies the lens geometry, and the projected position of
the source relative to this geometry.

3.4. Priors and their Transformation

3.4.1. Priors on Orbital Motion

The output of the MCMC consists of a set of points in
the parameter space. We call this set “a chain,” and every
individual solution “a link” in the chain. The density of the
points in a given space bin is proportional to a likelihood of
this bin. This would be true if we assumed uniform priors
on all our fit parameters. However, if we perform an MCMC
in the set of parameters (x1, x2, x3, . . . , ), which are given by
some transformation function from another set of parameters
(p1, p2, p3, . . . , ) for which we can find physically justified
priors, then those priors have to be converted to the fit coordi-
nates by multiplying them by a Jacobian of this transformation
||∂(p1, p2, p3, . . . , )/∂(x1, x2, x3, . . . , )||.

We perform microlensing calculations using the six instan-
taneous Cartesian phase-space coordinates. However, our intu-
ition about priors is better in the space of Keplerian parameters.
Thus, we need to construct the transformation function and
evaluate its Jacobian. In Appendix B, we derive formulae for
jkep = ||∂(e, a, tperi, Ωnode, i, ωperi)/∂(s0, α0, sz, γ‖, γ⊥, γz)||.

We assume flat priors on values of eccentricity, time of
periapsis, log a, and ωperi. To incorporate the fact that orbital
angular momentum vector can be oriented randomly in space,
we multiply the prior by ||∂(Ωnode, cos i)/∂(Ωnode, i)|| = | sin i|.
So, our orbital motion prior, in coordinates of fit parameters, is
equal to jkep|sin i|a−1.

3.4.2. Priors on Lens Parameters

We also include priors on the lens parameters as expected
from the simple Galactic model. Our trial fits to the light curve

(with only Keplerian priors) show that the lens has substantial
proper motion (of order 11–16 mas yr−1) and is located close to
the Earth (0.5–2.4 kpc). These suggest that most of the observed
proper motion is due to lens velocity itself (Earth, at the time of
the event, is traveling toward the Galactic Bulge, and the effect
of the source velocity on the relative proper motion is suppressed
by the distance factor). This high proper motion yields linear
velocities of 25–150 km s−1. Also, the allowed directions of
the lens’ proper motion lie between 90◦ and 180◦ relative to
the Galactic North (i.e., between Galactic East direction and
Galactic South direction); this, in connection with high proper
motion, yields high probability of a substantial component
perpendicular to the disk. This picture is more consistent with
Galactic thick disk kinematics rather than thin disk. Thus, in
order to impose priors on the lens parameters, we assume that
the lens belongs to the thick disk population. This is a less
constraining assumption than thin disk, as thick disk allows for
grater velocity dispersions.

We follow the approach of Batista et al. (2011, Section 5.1),
but using parameters suitable for a thick disk. In the exponential
disk we use scale height = 0.6 kpc and scale length = 2.75 kpc.
The probability density of the lens mass is assumed to be
proportional to M−1. We expect the velocity dispersion of the
thick disk stars to be (40, 55) km s−1 in the North and East
Galactic directions, respectively. The expected mean velocity is
(0, 200) km s−1, where we account for asymmetric drift of the
stars of 20 km s−1 behind the Galactic rotation. The expected
velocity of the Galactic Bulge sources is zero and its velocity
dispersion is (100, 100) km s−1.

From the disk model we assign prior probability density for
certain values of lens distance, mass, and lens–source relative
proper motion (Dl, M and μ). We translate these priors to
microlensing parameters (tE, θE, πE) using the Jacobian derived
by Batista et al. (2011):

jgal =
∥∥∥∥ ∂(M,Dl,μ)

∂(θE, tE,πE)

∥∥∥∥ = 2πrelMμ2

tEθEπ2
E

D2
l

AU
, (5)

where M = θE/κπE, Dl = AU/(πrel + πs), πrel = θEπE, and
μ = θE/tE.

3.5. MCMC Results

The results from MCMC are presented in Figure 3, where
likelihoods obtained from the chain are projected onto the
number of 2D planes, one for each pair of parameters.
Those likelihoods are weighted by the priors as calculated above.
We present plots in a “typically expected” scale for each param-
eter to show how well each of them was measured. We also
provide insets to show the detailed shape of the likelihood con-
tours (in under diagonal panels). The diagonal panel for a given
parameter shows the posterior likelihood marginalized along all
other dimensions. More exact numerical values of parameters
from the region of maximal likelihood can be found in Table 1.

To preserve clarity, Figure 3 does not show symmetric solu-
tions that originate from the static binary ecliptic degeneracy,
which is discussed in Section 5.1 and given by Equation (16).
These can be seen in the right panel of Figure 5 projected onto
the πE,N –γ⊥ plane.

4. PHYSICAL PARAMETERS

4.1. Source Star

From OGLE-III photometric maps for the Galactic Bulge
(Udalski et al. 2008; Szymański et al. 2011), we construct
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Figure 2. Color–magnitude diagram for OGLE-III data. The square marks the position of the red-clump centroid. The circle is the brightness and color of the
microlensed source star. The diamond is the light lying within the aperture that was not magnified (a blend), and the triangle is the sum of the blend and the source, as
seen well before and after the microlensing event.

a CMD of stars within 4′ around the location of the event
(Figure 2). The position of the centroid of the Red-Clump Giant
stars on the CMD is derived to be

((V − I ), V , I )RC,OGLE = (1.93 ± 0.02, 17.39 ± 0.04,

15.46 ± 0.04). (6)

We take the intrinsic centroid of the red clump (RC) to
be MI,RC,0 = −0.25 ± 0.05 (Bennett et al. 2010), and the
color (V − I )RC,0 = 1.08 ± 0.06 after Bensby et al. (2010,
Section 4.5), we calculate MV,RC,0 = 0.83 ± 0.08 and assume
the distance to the Galactic Center to be 8.0 ± 0.3 kpc (Yelda
et al. 2011). The location of the observed microlensing event is
(l, b) = (1◦33′29′′,−3◦49′21′′) in Galactic coordinates. When
we take into account the inclination of the Galactic Bar, we infer
that the RC stars in the field are slightly closer than the Galactic
Center. From Nishiyama et al. (2005) we find a distance modulus
smaller by 0.05 mag. This leads to an RC distance modulus of
14.47 ± 0.08, which yields estimates of the reddening along the
line of sight:

(E(V − I ), AV ,AI ) = (0.85 ± 0.06, 2.09 ± 0.12,

1.24 ± 0.10). (7)

This gives RV I = AV /E(V − I ) = 2.4, which is comparable
to other estimates of the extinction law toward the Bulge (e.g.,
Bennett et al. 2010).

We assume that the microlensing source is located behind the
dust causing this reddening. Applying this average extinction to
the source brightness obtained directly from the microlensing
fit to the calibrated OGLE data:

((V − I ), V , I )OGLE = (1.929 ± 0.002, 18.36 ± 0.04,

16.43 ± 0.04), (8)

we obtain the dereddened color and brightness of the source
star:

((V − I ), V , I )0,OGLE = (1.08 ± 0.06, 16.27 ± 0.13,

15.19 ± 0.11). (9)

4.1.1. Source Radius

Using color–color relations from Bessell & Brett (1988) we
infer that the source is a giant star of the spectral type K and
we find (V − K)0 = 2.50 ± 0.15. We assume solar metallicity
for the source star. Then, from Houdashelt et al. (2000), we
find that the temperature for a cool solar–metallicity giant star
with V − I = 1.08 should be about 4650 K ± 100 K. This is
in agreement with Ramı́rez & Meléndez (2005), who give the
temperature equal to 4600 K ± 100 K.

To find the value of the surface gravity we use the Berdyug-
ina & Savanov (1994) empirical relation for G-K giants and
subgiants given by

log g = 8.00 log T + 0.31M0,V + 0.27[Fe/H] − 27.15,

with an accuracy of ± 0.25 dex, (10)

where we use M0,V = 1.80 ± 0.10 to obtain log g = 2.71 ±
0.26.

Kervella et al. (2004) calibrated the color–brightness relations
for giants. We take their relation (14) with dereddened visual
magnitude of the source star V0 = 16.27 ± 0.13 and (V − K)0
color found above. The resulting angular radius of the source is

θ∗ = (4.45 ± 0.40) μas. (11)

4.1.2. Limb-darkening Coefficients

Knowing the temperature of the source star and its sur-
face gravity, we find the values of the linear limb-darkening
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coefficients. We use Table 30 of Claret (2000) with the assump-
tion of solar metallicity and turbulence velocity of 2 km s−1.
Uncertainties on these parameters have a very minor influence
on the values of limb-darkening coefficients, with uncertainties
in temperature being a dominant factor. For bands in which the
observations have been performed, we find

uV = 0.795, uR = 0.716, uI = 0.618, uH = 0.429.
(12)

For calculations of the magnification of the limb-darkened
source, we use coefficients in the form of Afonso et al. (2000,
Section 3.1). Their linear limb-darkening coefficient Γ is related
to commonly used coefficient u with the relation u = 3Γ/(Γ+2).
Thus, we have

ΓV = 0.721, ΓR = 0.627, ΓI = 0.519, ΓH = 0.334.
(13)

4.2. The Source Trajectory Curvature Degeneracy

There is a substantial degeneracy in the microlensing model
between the angular velocity of the lens in the plane of the
sky (γ⊥) and the north component of the microlensing parallax
(πE,N ), which can be seen clearly in Figure 3 (the intersection
of row 8 and column 6).

This degeneracy can be predicted to be present in a wide range
of microlensing events. It is a purely geometrical effect—both
rotation of the lens axis and parallax motion of the Earth have
similar effects on the apparent source trajectory in the lens
plane. This modification in both cases could be described, to
the first order, as a curvature of the source trajectory. Hence, the
curvature needed to explain observed changes in magnification
can be a linear combination of both effects.

Here we stress the importance of this degeneracy. Our model
minimization shows that it could be very severe and have a
significant impact on the final value of the distance to the
lens and its mass. Figure 4 shows two models, both fitting the
observed light curve well, with extremely different values of
πE,N and γ⊥, which lead to a very similar effective trajectory of
the source on the plane of the lens and finally to similar goodness
of fit. Masses and distances derived from these solutions differ
by a factor of 2. Note that both trajectories overlap more closely
when plotted in units of source radius rather than time.

In the general case of microlensing events observed toward
the Galactic Bulge and with the parallax signal measured, it
is very common that the πE,E component is well measured
and πE,N has substantial uncertainty. Looking at Figure 3 of
Park et al. (2004) one sees that, if we decompose the parallax
vector (πE) into components parallel (π‖) and perpendicular
(π⊥) to the direction of the projected Sun’s acceleration (near
the peak of the event), actually it is π‖ that is well measured
and the big uncertainties are in π⊥. Since the Earth’s (and thus
the Sun’s) acceleration vector most of the year lies near the
east–west direction, the uncertainty in π⊥ usually translates to
uncertainties in πE,N for Galactic Bulge events.

For this event, the caustic crossing occurred on 2009 March
27, so very close to the vernal equinox when the apex of the Earth
motion was almost directly toward the Galactic Bulge. That is
why the direction of the Sun’s acceleration was very close to
west, so πE,N (≈ πE,⊥ in this case) is not well constrained.

Because of this “curvature” degeneracy, we are unable to
accurately determine the distance and the mass of the lens from
the microlensing fit only. We need to use other known system
parameters such as observed magnitudes and colors of the lens

(where we assume that all blended light is coming from the
lens). We therefore restrict the set of solutions to those that
are consistent with theoretical color–color and color–magnitude
relations.

4.2.1. Choosing Solutions Consistent with the Theoretical Isochrones

We take a set of Y2 (Yonsei-Yale) Isochrones62 (Demarque
et al. 2004) and from the microlensing fit to the V-, I-, and H-
band data, we infer the magnitudes of the blend. Each link in the
chain of solutions gives slightly different values of the observed
magnitudes of the blend but, for reader information, we quote
the most common ones:

((V − I ), I, (I − H ))b = (1.316 ± 0.01, 15.680 ± 0.01,

1.409 ± 0.05). (14)

We assume that all non-magnified light comes from the binary
lens and that the components of the lens are main-sequence
stars. Given the mass ratio q = 0.27 from the microlensing fit,
we neglect the light input from the secondary and check the
consistency of the mass of the primary, its distance, and its
luminosity against the theoretical isochrones.

For initial tests we take the isochrone with solar metallicity
and age. For each solution (link) we calculate the distance and
mass of the primary and from the interpolated isochrone we
find the theoretical magnitudes in V, I, and H that it should
have if seen with no reddening. Then, assuming the slope of the
reddening curve AI/AV = 0.6 and AH/AV = 0.17, we find
the amount of interstellar reddening in the V band (AV ) that we
should subtract in order to shift the observed magnitudes closest
to the theoretical values. We throw out all solutions requiring
negative reddening or more reddening than the total amount
seen toward the Galactic Bulge source. We also add Gaussian
weights to each individual link depending on how close it could
be placed to the theoretical magnitudes with respect to the error
bars, and a weight corresponding to the value of the reddening
assuming that it should be about 1 ± 0.5 mag kpc−1 in V.

The set of solutions with the highest weights lies near
dAV /dD = 1.4 mag kpc−1, distance ≈ 1 kpc, and mass ≈
1 M� for the primary. From the most probable values of parallax
parameters (πE,N ≈ −0.2 and πE,E ≈ 0.2), we see that the likely
direction of the transverse velocity of the lens relative to the line
of sight is perpendicular to the Galactic plane. The value of
the relative proper motion taken from the equation μ = θE/tE
is near 12 mas yr−1, which at the distance of 1 kpc translates
to a linear transverse velocity of ∼60 km s−1. These further
constrained kinematic parameters strengthen our prediction
(from Section 3.4.2) that it is more likely that the lens belongs
to a thick disk population. Thus, for final isochrone consistency
checks, instead of a Solar-like isochrone, we choose one with
an age of 10 Gyr, a sub-solar metallicity ([Fe/H] = −0.5) and
an α-enhanced mixture ([α/Fe] = 0.3) which would be more
typical for stars with this kind of kinematics.

We prepare a subset of our chain links in which every link
has weight added depending on how well it matches with
the theoretical isochrone. The region of parameter space that
coincides with the magnitudes from the isochrone has

Dl = 1.1 ± 0.1 kpc, M1 = 0.84 ± 0.03 M�,

dAV

dD
= 1.4 ± 0.2 mag kpc−1. (15)

62 http://www.astro.yale.edu/demarque/yyiso.html
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Figure 3. 2D projection of likelihoods in 13D space of the microlensing parameters, of which the first 10 are the MCMC parameters and the last 3 are the grid (i.e.,
kept fixed during the MCMC procedure) parameters. We present plots in typical (or natural) scale for each parameter for easy assessment of how well each of them
is measured. Over-diagonal panels are the same as under-diagonal ones except that the latter contain insets. Diagonal panels show the likelihoods of one parameter
(displayed in the corresponding horizontal axis) marginalized over all other dimensions. The height of the plots corresponds to the 7σ difference. Likelihoods shown
are weighted by priors as described in Section 3.4.
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Figure 4. Illustration of the “curvature” degeneracy (Section 4.2): two microlensing model trajectories (red and blue) with extremely different values of πE,N and
angular velocity (γ⊥) lead to similar source–lens relative trajectories (filled circles in the lower right panel) and thus similar goodness of fit. Left panels show model
trajectories in coordinates normalized by the timescale of a particular model. Right panels show the same trajectories but with coordinates normalized by the size of
the source in each model. Top row shows the projection of the trajectories and rotating caustics on the plane of the sky, while bottom row shows projection of the same
trajectories on the plane rotating with the lens. (Caustics are plotted at the times of caustic crossings and 4 days before and after). Filled dots show the source positions
once a day and open circles show the source positions at the same points in time but with the parallax shift subtracted as if there were no acceleration of the motion of
the Earth. In summary, the different combinations of the effects of parallax and lens rotation can lead to the same projected source trajectory.

4.2.2. Choosing Solutions Consistent with the Spectroscopic Mass

Even if some assumptions in the procedure described in the
previous section happen to be incorrect, we will see this clearly
from the first spectrum taken of the object. The mass of the
primary could be estimated from the spectrum, and it will
be easy to redo the filtering of solutions with this additional
information.

In either case, the selected set of solutions could be subse-
quently tested against the observed RV curve to see if the or-
bital parameters derived from the microlensing fit are consistent
with it.

5. DISCUSSION

5.1. Degeneracies

Nine of the microlensing parameters are known from the
fit with very high precision. However, there are two pairs of
parameters for which the values are imperfectly measured (see
Figure 3). The first, obvious, pair is the position and velocity
along the line of sight (sz and γz), which do not have direct
effects on the observed magnification. They are only limited by
the requirement of e < 1 and by the shape of the Keplerian
orbit projected on the plane of the sky—to be precise, only
by the segment of the orbit that was covered by the lens
components during the high-magnification period. The other
pair of parameters that was not measured well are πE,N and γ⊥,
which are degenerate as described in Section 4.2. We partially
break this degeneracy into discrete regions by choosing only
those solutions that are in agreement with other information we
have on the event (Sections 4.2.1 and 4.2.2).

Because the mass of the lens depends on the magnitude of the
vector πE = (πE,N , πE,E), it does not change when the sign of

the πE,N component changes. This leads to two regions along
the πE,N –γ⊥ degeneracy that yield the same mass.

There is one more degeneracy from which our model suffers,
i.e., the orbiting binary ecliptic degeneracy (see Appendix A.4).
We note that the ecliptic degeneracy happens when the direction
of the Sun’s acceleration is constant: the one obvious case is
when the source lies on the ecliptic (hence the name of this
degeneracy), but the other is when the timescale of the event
is much shorter than the characteristic timescale of the changes
of the direction of acceleration. This is more likely to occur if
the microlensing event happens when Earth is moving toward
or away from the source.

This is the case in OGLE-2009-BLG-020, for which the
peak magnification happened near the vernal equinox. The
Sun’s acceleration at that time is directed toward West and its
direction varies very slowly in time. Note also that at that time
πE,⊥ ≈ πE,N so, following (A16), from any set of parameters
we can obtain an analogous set by changing

(u0, α0, πE,N , γ⊥) → −(u0, α0, πE,N , γ⊥). (16)

In Figure 5, we see the projection of our set of solutions on
the plane of πE,N and γ⊥. The two allowed regions correspond
to positive u0 (on top) and negative u0 (bottom) solutions. The
left panel shows the full chain while the right panel shows the
subset of links that are consistent with the isochrones chosen
in Section 4.2.1. Each of the continuous regions from the right
panel is split into two regions (for positive πE,N and negative
πE,N ), giving four separate regions in total.

Note that none of the degeneracies described in this section
is exact, which leads to different likelihoods between the four
regions.
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Figure 5. Projection of likelihoods onto πE,N and γ⊥ plane. The left panel shows the full MCMC chain for solutions with positive u0 (top region) and negative u0
(bottom region). Links that survived a consistency check with the theoretical isochrone (Section 4.2.1) are shown in the right panel.

5.2. Symmetries

Changing the sign of γ⊥ without changing the other compo-
nents of the velocity flips the orbit, which manifests itself as a
change of some Euler angles: Ωnode → −Ωnode and i → π − i.

As microlensing cannot directly measure position and veloc-
ity along the line of sight, every solution has its copy mirrored
by the plane of the sky, i.e., sz → −sz and γz → −γz. For orbit
elements, it means Ωnode → π − Ωnode and ωperi → ωperi − π .

Without loss in generality, we perform all calculations assum-
ing γz > 0 at the chosen time (t0,kep). RV measurements will
have information on the sign of the radial velocity—we can then
simply mirror our set of solutions using the above prescription.

5.3. Test of the Microlensing Solution with Radial Velocity

Every link in the MCMC chain represents a complete set
of parameters of the binary lens. It yields not only the mass,
distance, and separation in physical units, but also all Keplerian
parameters of the orbit. Thus, we can calculate the RV curve for
any period of the binary.

Assuming that the observations of the RV curve of the primary
are taken, we can assign to every link the likelihood that it is
consistent with those data. We derive the radial velocity for any
time the data were taken and, allowing the systemic velocity
of the center of mass of the binary to vary, we calculate the
likelihoods for every point. In this way, we construct a new set
of links weighted by both the microlensing light curve and the
RV curve. This new set of solutions yields new, most probable,
values of all lens parameters, which may or may not coincide
with the values derived from the microlensing-only solution.
This would be a test of the microlensing solution.

If the new values of the parameters lie outside the 3σ limits of
the microlensing solution, we can say that our method failed. By
contrast, if solutions, which are consistent with the RV curve,
lie near the best-fit values we obtained from microlensing, we
can not only believe our solution but we can also read off all
parameters of the binary, which are not given by one or the

other method alone. For example, the RV curve will give us the
period and systemic radial velocity, which we cannot read from
the microlensing light curve alone. However, microlensing will
yield the inclination, orientation on the sky, and the 2D velocity
of the binary projected on the plane of the sky.

5.3.1. Example of the Test

We illustrate this test in Figure 6. The figure shows (in
the background) the likelihoods derived from the microlensing
solution projected onto 2D planes of six orbital parameters, the
mass, distance, and mass ratio (this is a subset of the whole
chain chosen using the method described in Section 4.2.1).
We take one exemplary set of binary parameters and simulate
the RV curve consisting of 15 measurements taken from 2011
March to October and 15 measurements in a similar period in
2012. We then test our chain against this RV curve assuming
a measurement precision of 0.5 km s−1. The solutions with
the highest joint likelihoods (from microlensing and RV curve
fitting) are overplotted on each panel (in color on under-diagonal
panels, and as 10σ contour on over-diagonal panels). The initial
set of parameters we chose to generate the RV curve is marked
with open circles.

We see that all orbital parameters of the “seed” set of
parameters are retrieved by the RV comparison process (as
the links selected to be consistent with the RV curve lie near
the circles). This shows the selective power of the RV data,
which can prove whether the microlensing solution is wrong or
strongly suggest that it is right.

5.3.2. Useful Information for RV Observations

The selective power of the RV curve holds when the obser-
vations are taken through at least one period of the binary. We
have chosen a two-year span of observations since the period
we derive from our solutions is between 200 and 700 days (2σ
limit).

The binary equatorial coordinates are (18h04m20.s99,
−29◦31′08.′′6, J2000.0). The finding chart can be found on

12



The Astrophysical Journal, 738:87 (21pp), 2011 September 1 Skowron et al.

Figure 6. Likelihoods in the space of Kepler parameters shown in colors in the over-diagonal panels, and as a gray-scaled background in the under-diagonal panels.
The figure also illustrates how the observed RV curve would recover most probable values of parameters when compared with our set of solutions (Section 5.3). One
exemplary solution is chosen from the MCMC simulation as the “true” underlying binary parameters and is marked with open circles. Likelihoods of values of Kepler
parameters in agreement with both the microlensing light curve and the RV curve are shown in color in the under-diagonal panels (and as a 10σ black contour on the
over-diagonal panels).
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the OGLE EWS Web site—the link is given in the footnote
in Introduction. The binary is blended with the “microlensing
source” which, as the CMD in Figure 2 suggests, is a Galactic
Bulge giant. The observed magnitudes of the source are given by
Equation (8). The binary has a mass ratio of 0.272, so assuming
that both components are main-sequence stars, the majority of
the light is coming from the primary. Observed magnitudes of
the binary are given by Equation (14). The binary is 1.3 mag-
nitude brighter in V and 0.8 mag brighter in I than the giant;
however, they are of similar brightness in H.

Since the binary is located in the Galactic Disk, we anticipate
that it will be clearly separated in the velocity space from
the blended Bulge giant. The mass and the distance of the
primary, which we predict from the comparison of the light
coming from the binary with the theoretical isochrone, is given
by Equation (15) in Section 4.2.1. The RV amplitude of the
primary is expected to be 5 ± 1 km s−1.

6. CONCLUSIONS

The binary star that manifested itself in the microlensing
event OGLE-2009-BLG-020 is the first case of a lens that is
bright enough to allow ground-based spectroscopic follow-up
observations. This makes it a unique tool to test the microlensing
solution.

We derive lens parameters using the same method by which
the majority of planetary candidates discovered by microlensing
are analyzed. We detect a signal from the orbital motion of the
lens in the microlensing light curve. This signal, as well as our
measurements of the orbital parameters of the binary lens, can be
confirmed or contradicted by future observations. We propose a
test in Section 5.3.

Combining the microlensing solution with the RV curve will
yield a complete set of system parameters including 3D Galactic
velocity of the binary and all Keplerian orbit elements.

This work is an effort to establish a uniform
microlensing notation, extending work of Gould (2000), by
including the full set of orbital elements of the binary lens
(Appendix A). We also summarize all known microlensing
symmetries and degeneracies.

The method of deriving orbital elements from the six phase-
space coordinates, used to parameterize microlensing event, is
described in Appendix B. The Fortran codes we use for trans-
formation of the microlensing parameters to orbital elements
and for deriving all quantities described in Appendix B will be
attached to astro-ph sources of this paper, and will be published
on the author’s Web site.63
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APPENDIX A

NOTATION, CONVENTIONS, AND SYMMETRIES

Gould (2000) argued that it would be useful to establish
a “standard” system of microlensing notation to both ease
comparison of microlensing light-curve fits by different authors,
and to facilitate easy entry into the field by outsiders. Since
then, a number of new effects have been modeled, forcing the
introduction of new parameters. As was previously the case for
the smaller set of parameters listed by Gould (2000), this has
resulted in the emergence of multiple systems of notation, often
specifically adapted to the problem at hand.

In this paper, we have, for the first time, fit a microlensing
light curve to parameters representing a complete Kepler orbital
solution. Thus, it is appropriate to revisit the question of
notation. Indeed, the urgency of developing a common set of
not only notation but also conventions is increased, because it is
becoming increasingly difficult to compare microlens solutions
of different groups without a “score card.”

To the extent possible, we would therefore like to establish
a “standard system” of notation and conventions. However, our
fundamental goal is actually slightly less ambitious: to establish
a “reference system” of notation and conventions. Then, even
if various researchers do not adopt this system, they can still
specify how their system is related to this reference system,
which will then enable direct comparison of solutions carried
out in different systems, and also fairly direct translation of
parameters from one system to another.

Finally, as the list of parameters being fit grows, so does
the exposition of the meaning of these parameters, repeated in
one paper after another, with slight variation. It will be more
convenient (and cheaper) if future authors can simply reference
this appendix, perhaps supplemented by a few words on how
their system differs.

Our general approach will be to begin with the Gould
(2000) system and extend it to new parameters that have
“spontaneously” appeared in the literature. The extensions will
be guided first by establishing a logically consistent system,
and second (to the extent possible) adopting the most popular
notation previously developed. A big “logical” consideration is
to define parameters that closely parallel observable quantities,
so as to avoid introducing unnecessary degeneracies into the
fitting process, as would be the case for some physically well-
motivated parameters that are not directly constrained by the
data.

We will outline a notation system that includes three “basic”
and three “higher-order” point-lens event parameters, three
additional parameters required to describe static binaries, two
additional parameters required to describe binary orbital motion
in the plane of the sky, and four further parameters to describe
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complete orbital motion. In fact, one of these last four (the
angular Einstein radius θE) can logically be (and is) introduced
much earlier, although it is not essential as fit parameter until
the last stage. That is, there are 15 parameters in addition to flux
parameters (fs, fb), describing the source flux and blended flux
from each observatory. We include here neither parameters for
source orbital motion (“xallarap”), nor three-body systems.

The definition of parameters necessarily requires that we
specify certain conventions. We also attempt to make these
logically ordered and consistent. Finally, there are two main
classes of degeneracies, one continuous and the other discrete.
We trace how these two degeneracies “evolve” as additional
parameters are added to the description of the system.

A.1. Point-lens Parameters: Basic

For point-lens events, the almost universally accepted three
basic parameters are

(t0, u0, tE) (basic point lens). (A1)

These are the time of closest approach to the lens system
“center,” the lens–source projected separation at that time (in
units of the Einstein radius), and the Einstein crossing time.
The meaning of system “center” is obvious in the case of a
point lens, but will require generalization for more complicated
systems. Moreover, even tE will require more exact specification.
We retain these three notations, but defer discussion of the
generalizations of their meaning until later on in this paper. A
derived parameter, which is sometimes used as an independent
fitting parameter in place of either u0 or tE, is the “effective
timescale”

teff ≡ u0tE. (A2)

A.2. Point-lens Parameters: Higher Order

There are three higher-order parameters that can in principle
be measured for point-lens events, and these lead to a fourth
derived parameter. The first two parameters are the “vector
microlens parallax”

πE ≡ (πE,N , πE,E) ≡ (cos φπ, sin φπ )πE. (A3)

Here, πE = AU/r̃E, where r̃E is the Einstein radius projected
onto the observer plane and φπ is the direction of the lens motion
relative to the source expressed as a counterclockwise angle
north through east. The mere introduction of πE brings with
it a large number of symmetries and questions of convention,
which will grow yet more complicated as binary lenses come
into play. We therefore carefully delineate these in their simpler
form here.

First, it has become customary to adopt the “geocentric frame-
work” (An et al. 2002; Gould 2004), in which all parameters are
measured in the instantaneous frame that is at rest with respect
to the Earth at a specifically adopted time:

t0,par (parameter reference time), (A4)

which is not a fit parameter. Note that the subscript stands
for “parameter” (not “parallax”). Thus, for example, u0 is the
distance of closest approach of the source and the “lens center”
(i.e., for point lenses, simply the lens) in this geocentric frame.
Similarly, t0 is the time of this closest approach, and tE is the
time it would take to cross the Einstein radius if the lens–source
relative motion were the same as it is as seen from the Earth

at t0,par. Since the Earth velocity is constantly changing, all
of these parameters depend on the choice of t0,par. Finally, the
direction φπ (but not the magnitude πE) of the parallax vector
also depends on this choice. In practice, for point lenses, t0,par
is chosen quite close to t0 so that this is hardly an issue. But the
issue will become more important for binary lenses.

Second, point-lens parallaxes are subject to four related
“degeneracies,” which one might also call “symmetries.” To
properly express these, we introduce a different set of basis
vectors πE = (πE,‖, πE,⊥), where πE,‖ is the component parallel
to the apparent acceleration of the Sun (projected on the sky) in
the Earth frame at t0,par and the pair (πE,‖, πE,⊥) is right-handed
(Figure 3 of Gould 2004). We must also define a convention for
the sign of u0:

u0 > 0 ⇔ (lens passes source on its right), (A5)

as in Gould (2004, Figure 2). Then:

1. πE,⊥ Degeneracy. Typically, πE,‖ is much better determined
than πE,⊥ (Gould et al. 1994) because the former is
determined at third order in time and the latter at fourth
order (Smith et al. 2003). This can lead to elongated error
ellipses in the πE plane. Only for sufficiently long events
(or strong parallax signal) is this degeneracy broken.

2. u0 Degeneracy. In the limit that the projected acceleration of
the Sun can be regarded as constant, there is a perfect sym-
metry between ±u0 solutions, with only minor adjustment
of other parameters (Smith et al. 2003).

3. Ecliptic Degeneracy. In the limit of constant direction of
acceleration (as would be the case for a source on the
ecliptic), there is a perfect degeneracy

(u0, πE,⊥) → −(u0, πE,⊥) (A6)

(Jiang et al. 2004; Poindexter et al. 2005). Hence, sources
lying near the ecliptic (i.e., all Galactic Bulge sources)
may suffer an approximate degeneracy. We note that at
times when the Earth is moving toward or away from the
Galactic Bulge (near equinoxes), the direction of the Sun’s
acceleration projected on the sky varies slowly in time. This
significantly extends the effect of this degeneracy.

4. Jerk-Parallax Degeneracy. Gould (2004) discovered a four-
fold degeneracy in point-lens events with parallax. This
degeneracy can be broken partially or completely depend-
ing on circumstances and features of the light curve. Two
solutions out of four that are more likely to survive are
(u0, πE,⊥) → −(u0, πE,⊥ + πj,⊥). For the case when the
source is on the ecliptic, this is equal to the ecliptic degen-
eracy mentioned above.

The third higher-order point-lens parameter is ρ, the radius
of the source in units of the Einstein radius. Of course, ρ is only
rarely measurable in point-lens events and is very frequently
measured in binary events, and so is usually called a “binary-
lens” parameter, but it logically precedes the introduction of
binary events, so we include it here. The angular radius of the
source θ∗ can almost always be measured from the instrumental
color and magnitude of the source (Yoo et al. 2004). When ρ
is also measurable, then one can measure the angular Einstein
radius, and so the proper motion:

θE = θ∗
ρ

, μ = θE

tE
. (A7)
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If both θE and πE are measured, this immediately gives both
the lens mass and the lens–source relative parallax (Gould 1992)

M = θE

κπE
, πrel = θEπE, κ ≡ 4G

c2 AU
. (A8)

Note that the “proper motion” in Equation (A7) is geocentric
(i.e., in the instantaneous frame of the Earth at t0,par). To compare
with heliocentric proper motions derived from astrometry at
successive epochs, one must convert (Janczak et al. 2010)

μhelio − μgeo = v⊕,⊥
AU

πrel = v⊕,⊥
AU

θ2
E

κM
, (A9)

where v⊕,⊥ is the Earth velocity at t0,par projected on the plane of
the sky, and μgeo = μπE/πE. Clearly, this conversion can only
be carried out precisely if πE is known although the right-hand
side shows that the magnitude of the difference can be strongly
constrained even if there are only fairly crude limits on πE.

Note also that future astrometric microlensing measurements
may determine the (geocentric) vector proper motion μgeo
even if no parallax information is obtained (Høg et al. 1995;
Miyamoto & Yoshii 1995; Walker 1995).

At this point, we also introduce

t∗ ≡ ρtE, (A10)

the source self-crossing time (in fact, a source radius crossing
time). Often, t∗ is used in place of ρ as a fitting parameter. Note
that sometimes ρ is written as ρ∗ (in analogy to t∗), but for
ρ there is no need to subscript because there are no competing
quantities with this same name. Hence, we advocate simplifying
the notation and dropping the subscript “∗.”

A.3. Static Binary-lens Parameters

A static binary requires three additional parameters:

(q, s0, α0) (static binary parameters). (A11)

These are the mass ratio of the two components (q = m2/m1 =
M2/M1), their projected separation in units of the Einstein
radius, and the direction of lens–source relative motion (i.e.,
lens motion relative to the source) with respect to the binary
axis (which points from primary toward secondary). At the
beginning, one should specify which component of the binary
one calls a “primary.” (The angle α0 is counterclockwise. The
fractional mass of the primary, m1, is defined as M1/M .) There
are many points to note.

First, the separation is frequently called “d ” (rather than “s”).
However, this is the standard symbol for the derivative operator,
and so should not be used for other quantities that are likely to
appear in the same expressions with this operator.

Second, heretofore, s0 and α0 have been written simply as
s and α. And indeed, for static binaries there is no confusion
in doing so, since these are time-invariant quantities. And, for
this reason, it remains appropriate to drop the “0” subscript in
static analysis. Nevertheless, we introduce this subscript here to
maintain consistency with notation developed below.

Third, the choice of t0,par is no longer obvious. For high-
magnification events, it might be taken as the approximate time
of closest approach to the center of magnification, which closely
parallels the choice for point-lens events. But it might also be
chosen to be a particularly well-defined time, like a caustic
crossing. In any case, since it is not even approximately obvious,
it must be specified.

Fourth, in generalizing from point lens to binary lens, there
is no longer a unique system “center” by which to define u0 and
t0. However, since this does not present substantive problems
until there is orbital motion, we defer discussion of this point
until the next section.

Fifth, in the absence of parallax effects, static binaries are
subject to an exact degeneracy

(u0, α0) → −(u0, α0) (binary degeneracy). (A12)

Moreover, even for orbiting binaries, it is always possible to
express solutions in a form with u0 > 0 and 0 � α0 < 2π .
Hence, in our view, negative u0 should be reserved for solutions
that include parallax.

Finally, even if parallax is incorporated into the solution, static
binaries will be subject to a “static binary ecliptic degeneracy”:

(u0, α0, πE,⊥) → −(u0, α0, πE,⊥)

(static binary ecliptic degeneracy). (A13)

Note that for lenses seen toward the Galactic Bulge, the
directions of positive (πE,‖, πE,⊥) are typically (west, north) for
austral summer and autumn or (east, south) for austral winter
and spring. Hence, from a practical standpoint, it is often easy to
locate degenerate πE,⊥ solutions by seeding with a sign reversal
of πE,N .

A.4. Binary-lens Parameters: Projected Orbital Velocity

We begin by introducing the components of orbital motion

γ ≡ (γ‖, γ⊥) (at t0,kep), (A14)

which are the instantaneous components of velocity of the
secondary relative to the primary, respectively parallel and
perpendicular to the primary–secondary axis at a fiducial time
t0,kep. These are essentially γ‖ = (ds/dt)/s0 and γ⊥ = −dα/dt ,
and they are detected effectively from the changing shape
and changing orientation of the caustic, respectively. In this
form, their relation to the projected physical orbital velocity is
particularly simple,

Δv = DlθEs0γ , (A15)

where Dl is the distance to the lens. Note that (γ‖, γ⊥) is a
right-handed system on the plane of the sky, just like (N, E) and
(πE,‖, πE,⊥)

The introduction of these two parameters brings with them
two degeneracies. First, allowing for orbital motion reintroduces
the πE,⊥ continuous degeneracy. This appeared originally for
point lenses because of rotational symmetry, which is the
physical reason that πE,⊥ was fourth-order in time while πE,‖
was third-order (see Appendix A.2). Now it reappears because of
a degeneracy between πE,⊥ and the rotational degree of freedom
of orbital motion, i.e., as a correlation between πE,⊥ and γ⊥ (cf.
Section 4.2). Second, to the degree that the ecliptic degeneracy
is present (i.e., to the degree that the Sun’s acceleration does not
change direction during the event), it takes the form

(u0, α0, πE,⊥, γ⊥) → −(u0, α0, πE,⊥, γ⊥)

(orbiting binary ecliptic degeneracy). (A16)

Logically, t0,par and t0,kep can be different, and so we have
defined them separately. There may be cases for which one
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would want them to be different, but we cannot think of any.
Therefore, we suggest in general that

t0,par ≡ t0,kep, (suggested). (A17)

We will adopt this convention in what follows. (This will also
help to avoid confusion involving α0, which is defined at t0,par,
and s0, which, together with other phase-space parameters of
the orbit, is defined at t0,kep.)

We now return to the problem of specifying a “system center.”
For simplicity, let us begin by assuming that the binary center
of mass is chosen. Then, the problem of determining t0 and
u0 for a given model is identical to that of a single lens (as
discussed in Appendix A.2) except that t0,par may then differ
substantially from t0 (since it is convenient to choose t0,par
near the highest magnification), but this poses no problem of
principle. And, in particular, if s < 1, then the center of mass
and center of magnification coincide, which greatly simplifies
the choices. However, if s > 1, one might for example choose
the system center to be the “center of magnification” and t0,par
to be approximately the time closest to this center. Then, the
difference between t0,par and t0 would be small, but “center of
magnification” would not, in general, be in rectilinear motion
(together with the center of mass). In this example, the “system
center” would be offset from the center of mass by

Δ(ξ, η) =
[

q

1 + q

(
1

s(t0,par)
− s(t0,par)

)
, 0

]
, (A18)

where (ξ, η) are the coordinates on the lens plane parallel and
perpendicular to the primary–secondary axis. Note that this
offset properly describes the true position of the “center of
magnification” only at the one, chosen time (t0,par) and not at
the fit time t0. Again, for the case just specified, these two
times would be very close, so there is little practical impact.
However, in other cases, particularly for resonant caustics of
roughly equal-mass binaries, t0,par might be taken to be near a
caustic crossing that is very far from t0. Then, specification of
this time becomes extremely important.

For binary lenses with higher-order parameter measurements,
one almost always measures θE. And, because γ⊥ is often
degenerate with πE,⊥, it is usually (but not always) inappropriate
to attempt to measure γ without also measuring πE. This means
that when γ is measured, one can usually calculate the ratio of
kinetic to potential projected energy (Batista et al. 2011),

E⊥,kin

E⊥,pot
= κM�πE(|γ |yr)2s3

0

8π2θE(πE + πs/θE)3
. (A19)

Evaluation of this ratio requires specification of one additional
parameter, the source parallax πs . This is usually known, at least
approximately, since most sources are in the Galactic Bulge.

This ratio must absolutely be less than unity, if the system
is bound. Moreover, typically it is expected to be in the range
0.25–0.6. Hence, evaluating this ratio provides a good plausibil-
ity check on the solution. If θE is measured in milliarcseconds
and γ is measured in yr−1 (as we advocate), then the numerical
coefficient in Equation (A19) is 8.14/(8π2) = 0.103.

A.5. Binary-lens Parameters: Full Kepler Solutions

Full Kepler solutions require two parameters in addition to
those already mentioned. Since the parameters already specified
are in the Cartesian system, we advocate making the last two

Figure 7. Definition of the phase-space parameters (s0, 0, sz, γ‖, γ⊥, γz) at
t0,kep, describing the motion of the secondary binary-lens component (m2)
relative to the primary (m1). The vertical plane is the plane of the sky.

parameters also Cartesian, namely the instantaneous position
and velocity in the direction perpendicular to the plane of the
sky at time t0,kep. Specifically, these are sz and γz, which are
defined so that the physical relative 3D position and velocity of
the secondary relative to the primary are given by

Δr = DlθE(s0, 0, sz), Δv = DlθEs0(γ‖, γ⊥, γz) (A20)

(see Figure 7). Recall that the x-axis is defined by the position
of the secondary relative to the primary at t0,kep. These are
right-handed triads, which means that the radial direction points
toward the observer, which is opposite to the convention of RV
work. This conflict is not desirable but is virtually unavoidable.
The identification of the x-axis with the binary axis is extremely
firmly rooted in microlensing tradition. There is then only one
way to maintain right-handed 2D and 3D systems for γ : the
one adopted above. If we were to choose a left-handed system,
it would give rise to substantial confusion in the calculation of
orbits, which involve several cross products. Finally, it will be
very rare that any RV data are obtained on microlensing orbiting
binaries. When they are, one will just have to remember to
reverse the sign.

Note that full Keplerian solution is possible for events with πE
and θE measured. For other events one can always use simplified
2D description of the orbital motion (Appendix A.4), assuming
that the fraction of the orbit traveled by the binary components
during the event is small.

There is one final degeneracy associated with two introduced
(radial) parameters. As with visual binary orbits, there is a
perfect degeneracy of

(sz, γz) → −(sz, γz), (A21)

which can only be broken with the aid of RV measurements.
Hence, microlensing solutions should choose either sz � 0
or γz � 0. The choice will depend on which quantity is
more “isolated” from zero when both are permitted free range.
However, this choice should definitely be made to avoid multiple
representations of what are in fact identical solutions.

A.6. Summary

Point-lens events are specified by up to six parameters
(t0, u0, tE,πE, ρ), where πE = (πE,N , πE,E) is the 2D parallax
vector. This is always a geocentric system, explicitly if πE is
specified and implicitly if it is not. Because πE is a geocentric
quantity that depends on the Earth’s velocity, the definition of
all of these quantities (except ρ) requires that a specific time
t0,par be adopted at which the Earth’s velocity and position are
evaluated. The only exception is if πE is itself not specified.
These requirements carry over to binary lenses as well.
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If ρ is measured, then it is almost always possible to measure
θE = θ∗/ρ because θ∗ can be determined from the source flux
parameters in two bands.

A total of eight parameters are required to specify a binary
orbit. Two of these are the secondary/primary mass ratio q and
the total mass of the system M = θE/κπE. The remaining six
parameters are the six Cartesian phase–space coordinates of the
secondary relative to the primary. In order to relate microlensing
parameters to physical units, one must multiply by rE ≡ DlθE.
The lens distance can be expressed in terms of parameters
already specified, plus the source parallax: Dl = AU/(πEθE +
πs). Then, all but one of the six phase–space coordinates
appear directly as microlensing parameters (s0, 0, sz) and γ =
(γ‖, γ⊥, γz), for the positions and velocities, respectively, with
all quantities specified at t0,kep. The missing degree of freedom
represented by “0” in the spatial vector is recovered in α0, which
specifies the direction of lens–source relative motion, measured
with respect to the primary–secondary axis at time t0,par. We
recommend t0,kep = t0,par.

For binary lenses, the “system center” must be given explic-
itly, in order to define t0, u0, tE. This center must be defined as
coordinates on the lens plane as determined at t0,par, not at t0;
see Appendix A.1.

All coordinate systems are right-handed, either in two di-
mensions [(N, E), (πE,‖, πE,⊥), (γ‖, γ⊥)] or three dimensions
(γ‖, γ⊥, γz). This means, in particular, that positive γz points
toward the observer.

All relative motion conventions are defined by the motion of
the lens (with the source thought of as fixed). Thus, first, the sign
of u0 is positive if the lens passes the source on its right. Second,
φπ = atan2(πE,E, πE,N ) is the angle of lens motion, measured
counterclockwise relative to north. And, third, α0 is the angle
of the lens motion, measured counterclockwise relative to the
primary–secondary axis.

There are two approximate degeneracies, one discrete and
one continuous, which propagate through the analysis as more
parameters are added. In their “final form” when binary orbital
motion is modeled, the discrete degeneracy is a generalized
“ecliptic degeneracy,” which reverses the sign of the four
parameters (u0, πE,⊥, α0, γ⊥). The continuous degeneracy is
between πE,⊥ and γ⊥ (with u0 maintaining the same sign).
These degeneracies persist in simpler form when some of
these parameters are not measured. Finally, there is a perfect
degeneracy that reverses the signs of (sz, γz), so that the solutions
must be restricted to either sz � 0 or γz � 0 to avoid duplicating
identical solutions.

APPENDIX B

TRANSFORMATION BETWEEN MICROLENSING AND
KEPLERIAN ORBITAL PARAMETERS

In the process of model optimization we describe every
solution by a set of 15 “microlensing” parameters (t0, u0, tE,
ρ, πE, θ∗, s0, α0, sz, γ , πs , q). In order to derive positions of
the binary component at every given time, we need to know the
set of Keplerian parameters. They are also used for introducing
priors on the shape of the orbit since our intuition works better in
the space of orbital elements rather than Cartesian phase-space
parameters. In this appendix, we present the formulae we use to
transform microlensing parameterization into orbit elements.

As discussed by Batista et al. (2011) for the case of circular
orbits, the full Jacobian of the transformation from microlensing

to physical coordinates factors into two Jacobians

jfull =
∥∥∥∥ ∂(physical)

∂(microlensing)

∥∥∥∥ = jkep · jgal,

jkep =
∥∥∥∥∂(e, a, tperi, Ωnode, i, ωperi)

∂(s0, α0, sz, γ‖, γ⊥, γz)

∥∥∥∥ , (B1)

jgal =
∥∥∥∥ ∂(M,Dl,μ)

∂(θE, tE,πE)

∥∥∥∥ = 2πrelMμ2

tEθEπ2
E

D2
l

AU
.

Here we focus on jkep. (Note that, as remarked by Batista et al.
2011, strictly speaking, one should consider the parameters
θ∗ and ρ separately, rather than θE = θ∗/ρ, but as these
parameters barely vary over the chain, this makes essentially
no difference.) The priors in the microlensing coordinates (used
inside the MCMC routine in the transition probability, or used
for weighting the likelihoods obtained from the chain) will be
the priors in physical parameters multiplied by the Jacobian
(jfull).

B.1. Position Parameters

We have two systems of coordinates, the first one is relative to
the plane of the orbit and the second is related to the microlensing
event. The microlensing system, as described in Appendix A,
has its first axis set by the binary axis projected onto the plane of
the sky, and the third axis toward the observer. For fitting, we use
positions (s) and velocities (γ ) in microlensing units. However,
for the sake of this appendix we will be using positions and
velocities (r, v) in physical units of AU and AU yr−1. A simple
conversion between these units is given by r = s · DlθE and
v = rxγ , where Dl and θE can be calculated at any time from
the set of microlensing parameters.

In the system of coordinates relative to the orbit, we set the
first axis as the direction of periastron, and the third axis as that
of the angular momentum vector. The position of the body (r′)
in this system is given by

r′ =
⎛
⎝ cos E − e√

1 − e2 sin E
0

⎞
⎠ a r ′ = a(1 − e cos E), (B2)

where a is the semi-major axis, e is the eccentricity, and E is the
eccentric anomaly, which is defined as an implicit function of
time t by the Kepler equation,

n(t − tperi) = E − e sin E, n ≡
√

GM

a3
. (B3)

Here, M is the system mass, n is the mean motion, and tperi is
the time of periastron.

The velocity in the plane of the orbit (v′) is given by the
derivative of position:

v′ = dr′

dt
=

⎛
⎝ −sin E√

1 − e2 cos E
0

⎞
⎠ a

dE
dt

,

dE
dt

= n

1 − e cos E
, (B4)

where the last result is found by implicit differentiation of
Equation (B3). Implicit differentiation also yields

∂E
∂tperi

= −n

sin E
∂E
∂e

= 2a

3Δt

∂E
∂e

= −dE
dt

. (B5)
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B.2. Jacobian of the Transformation

The equations for r′ and v′ will be useful for calculating
relative positions of the binary component at any time and for
evaluating the Jacobian of the transformation between the phase-
space coordinates used in the microlensing fit and the orbital
elements (jkep). This in turn will be used to construct the full
Jacobian (B1) used for weighting the solution, together with the
priors on all “physical” parameters (cf. Section 3.4.1):

j−1
kep =

∥∥∥∥ ∂(s0, α0, sz, γ‖, γ⊥, γz)

∂(e, a, tperi, Ωnode, i, ωperi)

∥∥∥∥ = (DlθE)−6s−4
0

×
∥∥∥∥ ∂(rx, ry, rz, vx, vy, vz)

∂(e, a, tperi, Ωnode, i, ωperi)

∥∥∥∥ = jph/kep

(DlθE)6s4
0

.

(B6)

To calculate jph/kep, we need to evaluate derivatives of every
component of (r, v) with respect to every orbital element. To
find ∂r/∂(e, a, tperi), we will calculate ∂r′/∂(e, a, tperi) in the
plane of the orbit and then rotate it to the microlensing system
of coordinates using the rotation matrix R given by the three
orbital Euler angles (Ωnode—longitude of the ascending node,
i—inclination, ωperi—argument of periapsis):

r = Rr′, v = Rv′, (B7)

where
R = Rz(Ωnode) · Rx(i) · Rz(ωperi) (B8)

and Rx(β), Rz(β) are the matrix operators of rotation by an
angle β around the first and third axes, respectively,

Rx(β) =
(

cos β − sin β 0
sin β cos β 0

0 0 1

)

Rz(β) =
(

1 0 0
0 cos β − sin β
0 sin β cos β

)
. (B9)

Figure 8 shows the orientation of the relative orbit with respect
to the microlensing coordinates system. Conventions used for
Euler angles (Ωnode, i, ωperi) can also be read from this figure.

From Equation (B5) we obtain

∂r′

∂tperi
= −v′,

∂v′

∂tperi
= −a′ ≡ GM

(r ′)3
r′, (B10)

∂r′

∂a
= −3Δt

2a
v′ +

r′

a
,

∂v′

∂a
= −3Δt

2a
a′ − 1

2

v′

a
, (B11)

∂r′

∂e
= sin E

n
v′ −

⎛
⎜⎜⎝

1
e√

1 − e2
sin E

0

⎞
⎟⎟⎠ a, (B12)

∂v′

∂e
= sin E

n
a′ +

a cos E
r ′ v′ −

(
0
1
0

)
a2ne cos E
r ′√1 − e2

, (B13)

where a′ is the acceleration (not to be confused with a).
We then rotate these derivatives with R:

∂r
∂(e, a, tperi)

= R
∂r′

∂(e, a, tperi)
,

∂v
∂(e, a, tperi)

= R
∂v′

∂(e, a, tperi)
,

(B14)

Figure 8. Relative binary orbit which is rotated by three Euler angles: longitude
of nodes (Ωnode), inclination (i), and argument of periapsis (ωperi). The binary
components at the time t0,kep are marked with two dots. The z-axis points toward
the observer; axes marked with symbols ‖ and ⊥ define the plane that is parallel
to the plane of the sky and crosses the primary component of the binary. The
portions of the line that lie behind the plane are dashed. The base coordinate
system is related to the microlensing event such that at the time t0,kep the first
axis coincides with the binary axis projected onto the plane of the sky. In the
situation presented in this figure, the secondary is slightly behind the plane of
the sky (sz < 0) and is about to reach the ascending node; its velocity at t0,kep
has γ‖ < 0, γ⊥ > 0, and γz > 0.

and evaluate ∂r/∂(Ωnode, i, ωperi),

∂r
∂Ωnode

= ∂R

∂Ωnode
r′ = ∂Rz(Ωnode)

∂Ωnode
Rx(i)Rz(ωperi)r′,

(B15)

∂r
∂i

= ∂R

∂i
r′ = Rz(Ωnode)

∂Rx(i)

∂i
Rz(ωperi)r′, (B16)

∂r
∂ωperi

= ∂R

∂ωperi
r′ = Rz(Ωnode)Rx(i)

∂Rz(ωperi)

∂ωperi
r′,

(B17)

and similarly for ∂v/∂(Ωnode, i, ωperi).
From all derived derivatives we construct a 6 × 6 matrix

and calculate its determinant, using LUP matrix decomposition
(LU decomposition with partial pivoting) on the lower and
upper triangular matrices. Then, the determinant is given by
simple multiplication of all diagonal elements of the triangular
matrices. The Jacobian (jph/kep) is given by the absolute value
of the determinant.

It is useful to note that jph/kep goes to zero proportional to
e sin i, so for orbits close to circular or close to face-on, one
must be careful about numerical problems when dividing by
jph/kep.

B.3. Deriving Orbital Parameters from Phase-space
Parameters

In this appendix, we show how to translate phase-space
parameters in the microlensing system coordinates (r, v) to
orbital elements (e, a, tperi, Ωnode, i, ωperi).

The specific orbital energy (ε) and specific relative angular
momentum (h) are conserved, so they can be calculated given

19



The Astrophysical Journal, 738:87 (21pp), 2011 September 1 Skowron et al.

the values of r and v at any time:

ε = v2

2
− GM

r
= −GM

2a
, h = r × v. (B18)

If we express r in the units of AU, v in the units of AU yr−1,
and M in M�, then G ≡ 4π2. The semi-major axis can be
calculated from Equation (B18), and the period can be derived
from Kepler’s third law:

a = −GM

2ε
, P = 2π

√
a3

GM
. (B19)

Next, we find the unit vectors (versors) of the system of
coordinates relative to the orbit, with ẑ parallel to the angular
momentum vector and x̂ parallel to the eccentricity vector,64

e, which is a constant of motion and points in the direction of
periastron,

e = v × h
GM

− r
r
. (B20)

The eccentricity (e = ‖e‖) can also be calculated with formula
1 − e2 = h2/(GMa).

The three versors are then given by

x̂ = e
e
, ẑ = h

h
, ŷ = ẑ × x̂. (B21)

From projections of the positional vector (r) onto the versors
(x̂ and ŷ), we calculate the true anomaly (ν),

sin ν = ŷ · r
r

, cos ν = x̂ · r
r

, (B22)

then the eccentric anomaly

cos E = cos ν + e

1 + e cos ν
, (B23)

with the phase ambiguity in E itself resolved by

0 � E � π ⇐⇒ 0 � ν � π, −π < E < 0 ⇐⇒ π < ν < 2π.
(B24)

This convention minimizes |tperi − tkep|.
The time of periastron can be derived from the inverted

Equation (B3) written for the current time (t = t0,kep):

tperi = t0,kep − E − e sin E
n

. (B25)

The coordinates of the three versors describing the orbital
coordinate system (x̂, ŷ, ẑ) give us the full rotation matrix R,
defined earlier by Equations (B8),

R = (x̂ ŷ ẑ). (B26)

We can use this matrix to find the angles Ωnode, i, and ωperi
from the set of nine Equations (B8) for every element of R. The
inclination, which is always 0 � i � π , is given by

cos i = R33. (B27)

64 The eccentricity vector is related to the Laplace–Runge–Lenz vector (A) by
a scaling factor e = A/(GMm).

Then, the longitude of the ascending node can be calculated
from

cos Ωnode = − R23

sin i
, sin Ωnode = R13

sin i
, (B28)

and the argument of periapsis is

cos ωperi = R11 cos Ωnode + R21 sin Ωnode, (B29)

sin ωperi = (R21 cos Ωnode − R11 sin Ωnode) cos i + R31 sin i.

(B30)

(For the special case of face-on orbits (sin i = 0), we assume
ωperi ≡ 0 and calculate Ωnode from cos Ωnode = R11 and
sin Ωnode = R21.)

The relative position of the two binary components at any
time, r(t), can be calculated from Equation (B7), where R is
a time-invariant matrix, and r′(t) is given by Equations (B2)
and (B3).
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Paczyński, B. 1986, ApJ, 304, 1
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Woźniak, P. R. 2000, Acta Astron., 50, 421
Yelda, S., Ghez, A. M., Lu, J. R., Do, T., Clarkson, W., & Matthews, K. 2011,

in ASP Conf. Ser. 439, The Galactic Center: A Window to the Nuclear
Environment of Disk Galaxies, ed. M. R. Morris, Q. D. Wang, & F. Yuan
(San Francisco, CA: ASP), 167

Yoo, J., et al. 2004, ApJ, 603, 139

21

http://dx.doi.org/10.1086/133316
http://adsabs.harvard.edu/abs/1993PASP..105.1342S
http://adsabs.harvard.edu/abs/1993PASP..105.1342S
http://dx.doi.org/10.1046/j.1365-8711.2003.06183.x
http://adsabs.harvard.edu/abs/2003MNRAS.339..925S
http://adsabs.harvard.edu/abs/2003MNRAS.339..925S
http://dx.doi.org/10.1088/0004-637X/710/2/1641
http://adsabs.harvard.edu/abs/2010ApJ...710.1641S
http://adsabs.harvard.edu/abs/2010ApJ...710.1641S
http://adsabs.harvard.edu/abs/2011AcA....61...83S
http://adsabs.harvard.edu/abs/2011AcA....61...83S
http://adsabs.harvard.edu/abs/2008AcA....58...69U
http://adsabs.harvard.edu/abs/2008AcA....58...69U
http://dx.doi.org/10.1086/176367
http://adsabs.harvard.edu/abs/1995ApJ...453...37W
http://adsabs.harvard.edu/abs/1995ApJ...453...37W
http://adsabs.harvard.edu/abs/2000AcA....50..421W
http://adsabs.harvard.edu/abs/2000AcA....50..421W
http://adsabs.harvard.edu/abs/2011ASPC..439..167Y
http://dx.doi.org/10.1086/381241
http://adsabs.harvard.edu/abs/2004ApJ...603..139Y
http://adsabs.harvard.edu/abs/2004ApJ...603..139Y

	1. INTRODUCTION
	2. OBSERVATIONAL DATA
	2.1. Collection
	2.2. Preparation

	3. MICROLENSING MODEL
	3.1. Parameterization
	3.2. Searching for Solutions
	3.3. Expanding the Model
	3.4. Priors and their Transformation
	3.5. MCMC Results

	4. PHYSICAL PARAMETERS
	4.1. Source Star
	4.2. The Source Trajectory Curvature Degeneracy

	5. DISCUSSION
	5.1. Degeneracies
	5.2. Symmetries
	5.3. Test of the Microlensing Solution with Radial Velocity

	6. CONCLUSIONS
	APPENDIX A. NOTATION, CONVENTIONS, AND SYMMETRIES
	A.1. Point-lens Parameters: Basic
	A.2. Point-lens Parameters: Higher Order
	A.3. Static Binary-lens Parameters
	A.4. Binary-lens Parameters: Projected Orbital Velocity
	A.5. Binary-lens Parameters: Full Kepler Solutions
	A.6. Summary

	APPENDIX B. TRANSFORMATION BETWEEN MICROLENSING AND KEPLERIAN ORBITAL PARAMETERS
	B.1. Position Parameters
	B.2. Jacobian of the Transformation
	B.3. Deriving Orbital Parameters from Phase-space Parameters

	REFERENCES

