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2
, G. Pietrzyńki
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2
, K. Ulaczyk

2
, Ł. Wyrzykowski

2,7

(The OGLE Collaboration),

D. L. DePoy
8
, S. Dong

9
, B. S. Gaudi

3
, C.-U. Lee

10
, B.-G. Park

10
, R. W. Pogge

3

(The μFUN Collaboration),

M. D. Albrow
11

, A. Allan
12

, J. P. Beaulieu
13

, D. P. Bennett
14

, M. Bode
15

, D. M. Bramich
16

, S. Brillant
17

,

M. Burgdorf
15,18

, H. Calitz
19

, A. Cassan
13

, K. H. Cook
20

, E. Corrales
21

, Ch. Coutures
13

, N. Desort
21

, S. Dieters
22

,

D. Dominis Prester
23

, J. Donatowicz
24

, S. N. Fraser
25

, J. Greenhill
22

, K. Hill
22

, M. Hoffman
19

, K. Horne
26

,

U. G. Jörgensen
27

, S. R. Kane
28

, D. Kubas
17

, J. B. Marquette
13

, R. Martin
29

, P. Meintjes
19

, J. Menzies
30

, C. Mottram
25

,

T. Naylor
12

, K. R. Pollard
11

, K. C. Sahu
31

, C. Snodgrass
32

, I. Steele
15

, C. Vinter
27

, J. Wambsganss
33

, A. Williams
29

,

and K. Woller
34

(The PLANET/RoboNet Collaborations)
1 Department of Physics, Chungbuk National University, Cheongju 361-763, Republic of Korea

2 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
3 Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210, USA

4 SUPA School of Physics and Astronomy, University of St. Andrews, KY16 9SS, UK
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ABSTRACT

We present the result of the analysis of the gravitational binary-lensing event OGLE-2005-BLG-018. The light
curve of the event is characterized by two adjacent strong features and a single weak feature separated from the
strong features. The light curve exhibits noticeable deviations from the best-fit model based on standard binary
parameters. To explain the deviation, we test models including various higher-order effects of the motions of the
observer, source, and lens. From this, we find that it is necessary to account for the orbital motion of the lens in
describing the light curve. From modeling the light curve considering the parallax effect and Keplerian orbital
motion, we are able to not only measure the physical parameters but also to find a complete orbital solution of the
lens system. It is found that the event was produced by a binary lens located in the Galactic bulge with a distance
of 6.7 ± 0.3 kpc from the Earth. The individual lens components with masses 0.9 ± 0.3 M� and 0.5 ± 0.1 M� are
separated with a semi-major axis of a = 2.5 ± 1.0 AU and orbiting each other with a period P = 3.1 ± 1.3 yr. This
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event demonstrates that it is possible to extract detailed information about binary lens systems from well-resolved
lensing light curves.

Key words: binaries: general – gravitational lensing: micro
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1. INTRODUCTION

Microlensing occurs when an astronomical object approaches
a background star close to the line of sight. Due to the gravity
of the intervening object (lens), light rays from the background
star (source) bend, causing splitting and distortions in the source
star image. For Galactic microlensing events, the separation
between the split images is on the order of a milliarcsec and
thus it is difficult to directly observe the split images. However,
the lensing phenomenon can be observed from the change in the
source star brightness. For a point-source single-lens event, the
magnification of the source star flux is represented by (Paczyński
1986)

A = u2 + 2

u(u2 + 4)1/2
, u =

[(
t − t0

tE

)2

+ u2
0

]1/2

, (1)

where u is the lens–source separation in units of the angular
Einstein radius θE, t0 is the time of closest lens–source approach,
u0 is the lens–source separation at that moment, and tE is the
time required for the source to transit θE (Einstein timescale).
The Einstein radius is related to the physical parameters of the
lens system by

θE = (κMπrel)
1/2, (2)

where κ = 4G/(c2AU), M is the mass of the lens, πrel =
AU(D−1

L − D−1
S ), and DL and DS are the distances to the

lens and source, respectively. A standard single-lens event is
characterized by a non-repeating, smooth, and symmetric light
curve and modeling it requires the three parameters t0, u0, and
tE. Since the first detections by Alcock et al. (1993) and Udalski
et al. (1993), microlensing events have been detected toward
various star fields including the Galactic bulge (Udalski et al.
2005; Sumi et al. 2010), the large and Small Magellanic Clouds
(Wyrzykowski et al. 2009, 2010), and M31 (Calchi Novati et al.
2010). Currently, events are being detected at a rate of more
than 500 events per year, mostly toward the bulge field.

Among lensing events, a fraction of events are produced
by lenses composed of two masses. These binary-lens events
can exhibit light curves that are dramatically different from
those of single-lens events (Mao & Paczyński 1991). The
most prominent features occur when the source closely
approaches or crosses caustics, which represent the set of
source positions at which the lensing magnification of a point
source becomes infinity. Describing a standard binary-lens light
curve requires the inclusion of three additional parameters: the
mass ratio of the companion to its host, q; the projected separa-
tion between the lens components in units of the Einstein radius,
s⊥; and the angle between the source trajectory and the binary
axis, α. For a caustic-crossing event, an additional parameter of

35 Optical Gravitational Lens Experiment (OGLE).
36 Microlensing Follow Up Network (μFUN).
37 Author to whom any correspondence should be addressed.
38 Probing Lensing Anomalies NETwork (PLANET).
39 RoboNet.

the source radius normalized by the Einstein radius, ρ� (normal-
ized source radius), is required to account for the finite-source
effect (Dominik 1995; Gaudi & Gould 1999; Gaudi & Petters
2002; Pejcha & Heyrovský 2009).

However, modeling binary-lens light curves with the standard
parameters is occasionally not adequate to precisely describe
light curves. This is because light curves are subject to various
higher-order effects that result in deviations from the canonical
form. The causes of these effects include the motions of the
observer, source, and lens during the event. The change of the
observer’s position induced by the orbital motion of the Earth
around the Sun causes the source motion with respect to the
lens to deviate from rectilinear, and thus the resulting light
curve can exhibit long-term deviations. This is known as the
“parallax” effect (Gould 1992; Refsdal 1966). If the source star
is a binary, the source trajectory can also be affected by the
orbital motion of the source over the course of the event. This
is known as the “xallarap” effect (Han & Gould 1997), i.e., the
reverse of the spelling of “parallax.” Finally, the binary nature
of the lens implies that the positions of the lens components
vary in time due to their orbital motion. This “orbital” effect
causes the change not only of the source position with respect
to the lens but also of the magnification pattern because the
projected binary separation changes in time (Dominik 1998;
Ioka et al. 1999; Albrow et al. 2000; Rattenbury et al. 2002).
The deviations in lensing light curves caused by these second-
order effects are usually very small and thus difficult to measure.
However, when they are measured, they provide information
that allows us to better constrain the lens system. For example,
if the deviation caused by the parallax effect is measured, it is
possible to determine the physical parameters of the lens mass,
the distance to it, and the projected separation in physical units
(Gould 1992). If the orbital effect is measured, one can further
constrain the lens system by determining the orbital parameters
and intrinsic separation between the lens components (Gaudi
et al. 2008; Dong et al. 2009; Bennett et al. 2010; Penny et al.
2011; Batista et al. 2011; Skowron et al. 2011).

In this paper, we analyze the light curve of the binary-
lensing event OGLE-2005-BLG-018 by combining all available
data obtained from the survey and follow-up observations. The
event was analyzed before by Skowron et al. (2007) based on
the OGLE data and their model shows noticeable deviations.
Our preliminary modeling also indicated that a model based
on the standard binary parameters is not adequate enough to
precisely describe the observed light curve, suggesting the need
to consider higher-order effects. We conduct an analysis of the
light curve considering various second-order effects and present
the constraints of the lens system obtained from modeling.

2. OBSERVATION

The event OGLE-2005-BLG-018 occurred on a Galactic
bulge star located at (α, δ)J2000 = (17h51m23.s53,−29◦39′22.′′8),
which corresponds to the Galactic coordinates (l, b) =
(0.◦03,−1.◦45). The event was detected by the Optical Gravi-
tational Lensing Experiment (OGLE; Udalski et al. 2003) using
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Figure 1. Light curve of the microlensing event OGLE-2005-BLG-018. Also
presented are our light curves from modelings based on the standard binary
parameters (dotted curve) and considering the parallax and orbital effects (solid
curve).

(A color version of this figure is available in the online journal.)

the 1.3 m Warsaw telescope of the Las Campanas Observatory
in Chile. An anomaly alert was issued on 2005 March 31 by
the OGLE group. In addition, a series of real-time models were
issued by M. Dominik (2010, private communication). Follow-
ing the alert and models, the event was intensively observed
by follow-up groups including the Probing Lensing Anomalies
Network (PLANET; Beaulieu et al. 2006), RoboNet (Tsapras
et al. 2009), and Microlensing Follow-Up Network (μFUN;
Gould et al. 2006) by using six telescopes located on four differ-
ent continents. The telescopes used for follow-up observations
include 2.0 m Faulkes Telescope N. (FTN) in Hawaii, 2.0 m
Liverpool Telescope (LT) in La Palma, Spain, 1.0 m of
Mt. Canopus Observatory in Australia, and 1.54 m Danish
Telescope of La Silla Observatory in Chile, 0.6 m of Perth Ob-
servatory in Australia, and 1.3 m SMARTS telescope of CTIO
in Chile. Thanks to the follow-up observations, the light curve
was very densely resolved.

Figure 1 shows the light curve of the event. It is characterized
by three distinctive features, occurring at HJD ∼ 2453460 (t1),
2453512 (t2), and 2453528 (t3). The two adjacent peaks at t2
and t3 are strong while the other peak at t1 is relatively weak
and separated from the strong features.

3. MODELING OF SECOND-ORDER EFFECTS

We first model the light curve with the set of standard binary
parameters. As shown in Figure 1, the best-fit light curve
from this initial modeling shows noticeable deviations from
the observed light curve especially near the part of the light
curve around the weak feature, although the model light curve
describes the two strong features relatively well. Investigation
of the lens system geometry obtained from standard modeling
indicates that the projected separation between the binary lens
components is smaller than the Einstein radius, i.e., s⊥ < 1. In
this case, the resulting caustics are composed of three segments,
where one large central caustic is located around the center of
mass of the binary and the other two smaller caustics are located
away from the central caustic (Scheneider & Weiss 1986).40 The

40 In more precise terms, the number of caustics is three when
s⊥ < (1 + q)1/4(1 + q1/3)−3/4, and the three caustics merge into a single one as
the separation becomes equivalent to the Einstein radius.

model also indicates that the two strong features of the light
curve were produced by two successive crossings of the source
over the central caustic and the weak feature was produced by
the approach of the source to one of the two peripheral caustics.
Events produced by such a lens system are susceptible to orbital
effects because the peripheral caustic moves considerably even
for a small shift of the binary axis. In addition, the long duration
of the event, which lasted ∼200 days, raises the need to consider
both the parallax and xallarap effects. We, therefore, conduct
modelings of the light curve considering these second-order
effects as well.

Considering the parallax effect in modeling requires inclusion
of two additional parameters, πE,N and πE,E. These parameters
represent the two components of the lens parallax vector πE
projected on the sky in the north and east equatorial coordinates,
respectively. The direction of the parallax vector corresponds to
the lens–source relative motion in the frame of the Earth at
a specific time of the event. We set the reference time at the
moment of the second perturbation peak, i.e., t2. The size of
the parallax vector corresponds to the ratio of the Earth’s orbit
to the Einstein radius projected on the observer’s plane, i.e.,
πE = AU/[rEDS/(DS − DL)].

Under the assumption of a circular orbit and a very faint binary
companion, the xallarap effect is described by five parameters.
They are the orbital period of the source, PS; inclination, iS;
phase angle, ψ ; and the two components of the xallarap vector
in the north and east direction, ξE,N and ξE,E. The magnitude
of the xallarap vector ξE corresponds to the ratio of the source
star’s orbit to the Einstein radius projected on the source plane.

To account for the orbital effect, we consider two types of
parameterization. The first one is based on the approximation
that the binary lens rotates with a constant angular speed and
the projected separation between its components changes with a
constant rate. This parameterization requires the two parameters
dα/dt and ds⊥/dt , which represent the changing rates of the
angle between the binary axis and the source trajectory and the
projected separation between the lens components, respectively.
In the second parameterization, we fully consider the Keplerian
orbital motion. This requires us to include two extra parameters
in addition to the orbital parameters used in the first type
of parameterization. These additional parameters are s‖ and
ds‖/dt , where s‖ represents the line-of-sight separation between
the binary components in units of θE and ds‖/dt represents its
rate of change. For the full description of the orbital lensing
parameters, see the summary in the Appendix of Skowron et al.
(2011).

With these parameterizations, we test six different models.
The first model is based on standard binary parameters with
a static lens and source and no parallax motion of the Earth
(standard model). The second and third models include the
parallax and xallarap effects, respectively. The fourth model
includes the orbital effect of the lens with the two parameters
dα/dt and ds⊥/dt . In the last two models, we consider both
the parallax and orbital effects where the orbital effect is
described by two and four parameters, respectively. We note that
the four-parameter orbital modeling must include the parallax
parameters, whereas the two-parameter orbital modeling does
not necessarily need this.

We search for the solution of the best-fit parameters of the
individual models by minimizing χ2 in the parameter space.
For binary-lensing modeling, this is a very complex procedure
due to several reasons. First, the complexity of the χ2 surface in
the parameter space makes it difficult to rule out the possibility
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Table 1
Best-fit Parameters for the Six Tested Models

Parameters Model

Standard Parallax Xallarap Orbit Parallax + Parallax +
(Two Parameters) Orbit (Two Parameters) Orbit (Four Parameters)

χ2/dof 3465.1/(1602) 2352.2/(1600) 2314.0/(1597) 1611.8/(1600) 1610.506/(1598) 1607.121/(1596)
t0 (HJD−2450000) 3514.565 ± 0.007 3514.577 ± 0.008 3514.546 ± 0.011 3514.931 ± 0.014 3514.906 ± 0.0143 3514.927 ± 0.016
u0 0.124 ± 0.001 0.122 ± 0.001 0.126 ± 0.001 0.127 ± 0.001 0.127 ± 0.001 0.128 ± 0.001
tE (days) 50.44 ± 0.09 51.629 ± 0.072 49.921 ± 0.173 52.297 ± 0.083 52.337 ± 0.115 52.130 ± 0.159
s⊥ 0.715 ± 0.001 0.702 ± 0.001 0.705 ± 0.001 0.722 ± 0.001 0.722 ± 0.001 0.724 ± 0.001
q 0.521 ± 0.001 0.528 ± 0.002 0.555 ± 0.004 0.539 ± 0.003 0.536 ± 0.003 0.539 ± 0.002
α (rad) 4.998 ± 0.001 5.002 ± 0.001 4.998 ± 0.002 5.028 ± 0.001 5.025 ± 0.002 5.026 ± 0.002
ρ� 0.025 ± 0.001 0.025 ± 0.001 0.025 ± 0.001 0.025 ± 0.001 0.025 ± 0.001 0.026 ± 0.001
πE,N . . . 0.115 ± 0.011 . . . . . . −0.044 ± 0.030 −0.011 ± 0.028
πE,E . . . 0.342 ± 0.008 . . . . . . −0.006 ± 0.010 0.021 ± 0.010
ξE,N . . . . . . −0.039 ± 0.004 . . . . . . . . .

ξE,E . . . . . . −0.039 ± 0.001 . . . . . . . . .

ψ . . . . . . 3.98 ± 0.25 . . . . . . . . .

iS . . . . . . 1.50 ± 0.10 . . . . . . . . .

PS (yr) . . . . . . 0.45 ± 0.01 . . . . . . . . .

ds⊥/dt (yr−1) . . . . . . . . . −0.409 ± 0.009 −0.387 ± 0.011 −0.389 ± 0.013
dα/dt (yr−1) . . . . . . . . . 0.272 ± 0.022 0.328 ± 0.049 0.315 ± 0.046
s‖ . . . . . . . . . . . . . . . −0.832 ± 0.180
ds‖/dt (yr−1) . . . . . . . . . . . . . . . 0.581 ± 0.161

of the existence of local minima (Dominik 1999), implying
that even if a plausible model is found, it is difficult to be
sure that the solution is the correct one. This makes it difficult
to use a simple downhill approach to search for solutions.
Second, modeling is further complicated by the sheer size of
the parameter space. The large number of parameters implies
that brute-force searches for solutions are very difficult and
extremely time-consuming. To resolve the degeneracy problem
but avoiding searches throughout all parameter space, we use a
hybrid approach in which grid searches are conducted over the
space of a set of parameters and the remaining parameters are
searched by using a downhill approach. We choose s⊥, q, and
α as the grid parameters because they are related to the light
curve features in a complex way such that a small change in
the values of the parameters can lead to dramatic changes in the
resulting light curve. On the other hand, the other parameters
are more directly related to the light curve features and thus
they can be searched for by using a downhill approach. For the
χ2 minimization in the downhill approach, we use the Markov
Chain Monte Carlo (MCMC) method.

Another difficulty in binary-lensing modeling arises due to
large computation. Most binary-lens events exhibit perturba-
tions induced by caustic crossings or approaches during which
the finite-source effect is important. Calculating finite magni-
fications involves a numerical method, which requires heavy
computations. Considering that modeling requires the produc-
tion of a large number of light curves of trial models, it is
important to apply an efficient method for magnification cal-
culations. We accelerate the computation first by minimizing
computations in the numerical method and second by restrict-
ing the numerical computation only when it is necessary. The
numerical method applied to finite magnification computations
is based on the ray-shooting method. In this method, a large
number of rays are uniformly shot from the image plane, bent
according to the lens equation, and land on the source plane.
The magnification is the computed as the ratio of the number
density of rays on the source surface to the density on the image
plane. In this process, we reduce the number of rays required

for magnification computations by shooting only ones arriving
at the region around the caustics. We further restrict numeri-
cal computations by applying a simple analytic hexadecapole
approximation for finite magnifications (Pejcha & Heyrovský
2009; Gould 2008) unless the source is located very close to the
caustics.

We incorporate the effect of the limb darkening of the source
star surface when we compute the finite-source magnification.
The surface brightness is modeled by

Sλ = Fλ

πθ2
�

[
1 − Γλ

(
1 − 3

2
cos θ

)]
, (3)

where Γλ is the linear limb-darkening coefficient, Fλ is the flux,
and θ is the angle between the normal to the source star’s surface
and the line of sight toward the star. From the color of the source
star measured from its location on the color–magnitude diagram,
it is found that the source is a clump giant. We, therefore, use the
limb-darkening coefficients of ΓV = 0.708, ΓI = 0.613, and
ΓR = 0.508 by adopting the values from Claret (2000) under
the assumption that vturb = 2 km s−1, log(g/g�) = −1.9, and
Teff = 4750 K.

4. RESULT

In Table 1, we present the solutions found for the six tested
models. In Figure 2, we also present the residuals of the data
from the best-fit light curves of the individual models. We find
that neither the parallax nor the xallarap effect alone is enough to
precisely describe the observed light curve, although the models
considering these effects improve the fit from the standard model
with Δχ2/dof ∼ 1113/1600 and 1151/1597, respectively. For
both models, the fits are still poor near the weak feature of the
light curve.

On the other hand, it is found that the light curve is well
described by the model including the orbital effect. We find that
the fit with two orbital parameters is better than the standard
model by Δχ2/dof ∼ 1853/1600. It is also better than the best-
fit parallax and xallarap models by Δχ2/dof ∼ 740/1600 and
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Figure 2. Residual of data from six different models.

(A color version of this figure is available in the online journal.)

702, respectively. Therefore, we find that the dominant second-
order effect for the deviation between the observed data and
standard model is the orbital motion of the lens. As mentioned
in the previous section, the importance of the orbital effect was
expected due to the specific geometry of the lens system in
which the source trajectory passes the central and the peripheral
caustics of a close binary. In this sense, the event has much
in common with the event MACHO 97-BLG-41 for which the
orbital effect was measured for the first time (Albrow et al.
2000).

The Einstein radius is measured from the normalized source
radius, ρ�, determined from modeling combined with the angu-
lar radius of the source star, θ�, i.e., θE = θ�/ρ�. We measure
the angular source radius by first measuring the de-reddened
color of the source star and converting it into radius by using the
relation between the color and angular radius given by Kervella
et al. (2004). For the calibration of the magnitude and color of
the source star, we use the centroid of bulge clump giants in the
color–magnitude diagram as a reference under the assumption
that the source and clump giants experience the same amount
of extinction (Yoo et al. 2004). The measured Einstein radius is
θE = 0.506 ± 0.044 mas.

Although the importance of the orbital motion of the lens
in describing the observed light curve is identified, we conduct
additional modeling considering both orbital and parallax effects

in order to see the possibility of further improvement of the fit
and to constrain the physical parameters of the lens system.
The orbital effect is considered by both models with two and
four parameters. From the model with the parallax plus two
orbital parameters, it is found that adding the parallax effect
does not improve the fit significantly. This could be because the
parallax is poorly constrained or because it is constrained close
to zero. From the other modeling with four orbital parameters,
it is found that the reason for the small improvement of the fit is
due to the value of the parallax. In Figures 3 and 4, we present
the scatter plot of Markov chains in the πE,E–πE,N parameter
space and the histograms of the microlens orbital parameters,
respectively. They show that the parallax and orbital parameters
are reasonably well constrained. We measure the lens parallax of
πE = 0.028±0.010. A small parallax value suggests that either
the lens is heavy or is located away from the Earth. On the top
of the light curve in Figure 1, we present the best-fit light curve
for this model. In Figure 5, we also present the source trajectory
with respect to the caustic. We note that the caustic shape varies
with time. We present three sets of caustics corresponding to
the times t1, t2, and t3. Also marked are the positions of the lens
components at the corresponding times.

We determine the physical and orbital parameters of the lens
system based on the measured lensing parameters. This requires
us to adopt a value of the Einstein radius in the modeling process

5
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Figure 3. Scatter plot of Markov chains in the space of the parallax parameters
πE,E and πE,N for the best-fit model. Different colors of points represent Δχ2

from the minimum.

(A color version of this figure is available in the online journal.)

including four orbital parameters. We adopt this value from the
one measured in the model with two orbital parameters, i.e.,
θE = 0.506 ± 0.044 mas. In principle, the value of θE could
change as more parameters are added. However, this change

Figure 5. Geometry of the binary-lens system responsible for the lensing
event OGLE-2005-BLG-018. The filled dots represent the locations of the lens
components during the times of the three different major perturbations, where
the bigger dots represent the heavier lens component. The insets show the zoom
of the lens positions. The closed figure composed of concave curves represents
the caustics where the colors correspond to those of the lenses. The line with
an arrow represents the source trajectory. The coordinates (ξ , η) are centered at
the center of mass of the binary and all lengths are scaled by the Einstein radius
corresponding to the total mass of the binary lens.

(A color version of this figure is available in the online journal.)

is usually very small because the constraint of ρ�, from which
θE is measured, is provided by the very localized region of the
light curve where the finite-source effect is important, while
the orbital and parallax effects are constrained from the overall

Figure 4. Histograms of lens orbital parameters obtained from the four-parameter orbital fit.
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Figure 6. Histograms of the physical and orbital parameters. The light and dark shaded histograms are with and without the constraint from the blended flux,
respectively.

shape of the light curve. As a result, the physical and orbital
parameters are barely affected by the adopted value of θE.
With the Einstein radius and the lens parallax determined from
modeling, the mass and distance to the lens are determined by

M = M1 + M2 = θE

κπE
(4)

and

DL = AU

πEθE + πS
, (5)

respectively, where M1 and M2 are the masses of the heavy and
light components of the lens, respectively, and πS = AU/DS is
the parallax of the source star.

In addition to the constraints provided by the light curve
itself, the lens system can also be constrained by the blended
flux. This is because the flux from the lens cannot exceed
the measured blended flux. We find that the blended flux is
negligible compared to the flux from the source star. Even
considering that the source is a giant, this provides the constraint
that the primary of the lens should be a main-sequence star.
Therefore, we set the upper mass limit of the primary as
∼1.3 M�, and thus the total mass of the lens should be �2.0 M�.

In Figure 6, we present the distributions of the physical and
orbital parameters determined from modeling. The histograms
are based on the chains obtained from MCMC running, where
the dark and light shaded ones are with and without the
constraint from the blended flux, i.e., M � 2.0 M�, respectively.

Table 2
Physical and Orbital Parameters

Parameter Values

Mtotal (M�) 1.38 ± 0.39
M1 (M�) 0.90 ± 0.25
M2 (M�) 0.48 ± 0.14
DL (kpc) 6.74 ± 0.32
a (AU) 2.46 ± 0.97
P (yr) 3.10 ± 1.30
ε 0.97 ± 0.01
i (deg) −55.01 ± 6.69
tperi (HJD′) 2670 ± 352

Note. HJD′ = HJD−2450000.

We measure the physical and orbital parameters and their
uncertainties as the mean and standard deviation of the values
in the chains and list them in Table 2. It is found that OGLE-
2005-BLG-018 was produced by a binary lens located in the
Galactic bulge with a distance to the lens of DL = 6.7±0.3 kpc.
The lens is composed of two main-sequence stars with masses
M1 = 0.9 ± 0.3 M� and M2 = 0.5 ± 0.1 M�. The mass
of the lens system is consistent with the restriction of M =
M1 + M2 < 2 M� that was given by the blended flux. The
two lens components are separated by a semi-major axis of
a = 2.5 ± 1.0 AU and orbiting each other with an orbital period
of P = 3.1 ± 1.3 yr.
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5. CONCLUSION

We analyzed the light curve of OGLE-2005-BLG-018 based
on the combined data from the survey and follow-up obser-
vations. The light curve shows noticeable deviations from the
best-fit model based on the standard binary parameters. From
modeling that include various higher-order effects, we found
that the dominant second-order effect for the deviation is the
orbital motion of the lens. Based on modeling considering full-
Keplerian orbital motion and the parallax effect, we were able
to measure the physical and orbital parameters of the lens sys-
tem. Detections of higher-order effects and determinations of
the physical lens parameters were possible due to the well-
resolved light curve covering all three major perturbations. Un-
fortunately, events with such detections of higher-order effects
are rare for events detected in current lensing experiments based
on the survey/follow-up mode. This is because it is difficult to
resolve perturbations from survey observations alone and even
if perturbations are detected and an alert is issued for follow-up
observations, it is unavoidable to miss part of the perturbation
due to the time gap between the alert and the initiation of follow-
up observations.

However, the advent of next-generation experiments based
on the ground and in space will make it possible to routinely
measure higher-order effects for a large fraction of lensing
events. The OGLE and MOA survey groups have recently
upgraded their cameras with a wider field of view. The Korea
Microlensing Telescope Network (KMTNet) is a funded project
that plans to achieve ∼10 minute sampling of all lensing events
using a network of 1.6 m telescopes to be located in three
different continents in the southern hemisphere with cameras
having 4 deg2 field of view. Furthermore, there are planned
lensing surveys in space including EUCLID (Beaulieu et al.
2010) and WFIRST (Bennett 2010), which have been proposed
to the ESA and recommended to be the top ranked large space
missions of NASA for the next decade. When these experiments
come online, nearly all events will be densely observed, making
it possible to routinely measure the higher-order effects and thus
constrain the physical parameters of lenses.

This work was supported by the research grant of the
Chungbuk National University in 2009. Work by A.G. was
supported by NSF grant AST-0757888. The OGLE project has

received funding from the European Research Council under the
European Community’s Seventh Framework Programme (FP7/
2007-2013)/ERC grant agreement No. 246678 to A.U.
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