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ABSTRACT

Aims. We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited
pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range
0.07 M� < Mhost < 0.49 M� at 90% confidence. The planet-star mass ratio q = 0.0132 ± 0.003 has been measured extremely well, so at the
best-estimated host mass, the planet mass is mp = 2.6 Jupiter masses for the median host mass, M = 0.19 M�.
Methods. The host mass is determined from two “higher order” microlensing parameters. One of these, the angular Einstein radius θE = 0.31 ±
0.03 mas has been accurately measured, but the other (the microlens parallax πE, which is due to the Earth’s orbital motion) is highly degenerate
with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a
Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits.
Results. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < DL < 7.9 kpc, 1.1 AU < a <
2.7 AU, and 3.8 yr < P < 7.6 yr, respectively.

Key words. gravitational lensing: micro – methods: data analysis – planets and satellites: detection – methods: numerical – instrumentation:
adaptive optics – instrumentation: photometers

� Photometric data is only available in electronic form at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or
via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/529/A102

1. Introduction

Over the past decade, the gravitational microlensing method has
led to detection of ten exoplanets (Bond et al. 2004; Udalski et al.
2005; Beaulieu et al. 2006; Gould et al. 2006; Gaudi et al. 2008;
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Bennett et al. 2008; Dong et al. 2009b; Janczak et al. 2010;
Sumi et al. 2010), which permits the exploration of host-star and
planet populations whose mass and distance are not probed by
any other method. Indeed, since the efficiency of the microlens-
ing method does not depend on detecting light from the host star,
it allows one to probe essentially all stellar types over distant re-
gions of our Galaxy. In particular, microlensing is an excellent
method to explore planets around M dwarfs, which are the most
common stars in our Galaxy, but which are often a challenge for
other techniques because of their low luminosity. Roughly half
of all microlensing events toward the Galactic bulge stem from
stars with mass <∼0.5 M� (Gould 2000).

Determining the characteristics and frequency of planets or-
biting M dwarfs is of interest not only because M dwarfs are the
most common type of stars in the Galaxy, but also because these
systems provide important tests of planet formation theories. In
particular, the core accretion theory of giant planet formation
predicts that giant planets should be less common around low-
mass stars (Laughlin et al. 2004; Ida & Lin 2005; Kennedy &
Kenyon 2008; D’Angelo et al. 2010), whereas the gravitational
instability model predicts that giant planets can form around
M dwarfs with sufficiently massive protoplanetary disks (Boss
2006). In fact, there is accumulating evidence from radial veloc-
ity surveys that giant planets are less common around low-mass
primaries (Cumming et al. 2008; Johnson et al. 2010). However,
these surveys are only sensitive to planets with semimajor axes
of <2.5 AU. Since it is thought that the majority of the giant
planets found by radial velocity surveys likely formed farther out
in their protoplanetary disks and subsequently migrated close to
their parent star, it is not clear whether the relative paucity of
giant planets around low-mass stars found in these surveys is a
statement about the dependence on stellar mass of migration or
of formation.

Microlensing is complementary to the radial velocity tech-
nique in that it is sensitive to planets with larger semimajor axes,
closer to their supposed birth sites. Indeed, based on the analysis
of 13 well-monitored high-magnification events with 6 detected
planets, Gould et al. (2010) found that the frequency of giant
planets at separations of ∼2.5 AU orbiting ∼0.5 M� hosts was
quite high and, in particular, consistent with the extrapolation of
the frequencies of small-separation giant planets orbiting solar
mass hosts inferred from radial velocity surveys out to the sepa-
rations where microlensing is most sensitive. This suggests that
low-mass stars may form giant planets as efficiently as do higher
mass stars, but that these planets do not migrate as efficiently.

Furthermore, of the ten previously published microlensing
planets, one was a “supermassive” planet with a very high mass
ratio: a mp = 3.8 MJup planet orbiting an M dwarf of mass
M = 0.46 M� (Dong et al. 2009a). Given their high planet-to-
star mass ratios q, such planets are expected to be exceedingly
rare in the core-accretion paradigm, so the mere existence of this
planet may pose a challenge to such theories. Gravitational insta-
bility, on the other hand, favors the formation of massive planets
(provided they form at all).

Current and future microlensing surveys are particularly sen-
sitive to large q planets orbiting M dwarf hosts, for several
reasons. As with other techniques, microlensing is more sensi-
tive to planets with higher q. In addition, as the mass ratio in-
creases, a larger fraction of systems induce an important subclass
of resonant-caustic lenses. Resonant caustics are created when
the planet happens to have a projected separation close to the
Einstein radius of the primary (Wambsganss 1997). The range
of separations that give rise to resonant caustics is quite narrow
for small q, but grows as q1/3. Furthermore, although the range

of parameter space giving rise to resonant caustics is narrow, the
caustics themselves and their cross sections are large and also
grow as q1/3. Thus the probability of detecting planets via these
caustics is relatively high, and such systems contribute a signifi-
cant fraction of all detected events, particularly for supermassive
planets orbiting M dwarfs. Events due to resonant caustics are
particularly valuable, as they allow one to further constrain the
properties and orbit of the planet. This is because these events
usually exhibit caustic features that are separated well in time.
When combined with the fact that the precise shape of a reso-
nant caustic is extremely sensitive to the separation of the planet
from the Einstein ring, such light curves are particularly sensi-
tive to orbital motion of the planet (see, e.g., Bennett et al. 2010).

Here we present the analysis of the microlensing event
MOA-2009-BLG-387, a resonant-caustic event, which we
demonstrate is caused by a massive planet orbiting an M dwarf.
The light curve associated with this event contains very
prominent caustic features that are well separated in time. These
structures were very intensively monitored by the microlensing
observers, so that the geometry of the system is quite well con-
strained. As a result, the event has high sensitivity to two higher
order effects: parallax and orbital motion of the planet. In Sect. 4,
we present the modeling of these two effects and our estimates of
the event characteristics. This analysis reveals a degeneracy be-
tween one component of the parallax and one component of the
orbital motion. We explain, for the first time, the causes of this
degeneracy. It gives rise to very large errors in both the parallax
and orbital motion, which makes the final results highly sensitive
to the adopted priors. In particular, uniform priors in microlens-
ing variables imply essentially uniform priors in lens-source rel-
ative parallax, whereas the proper prior for physical location is
uniformity in volume element. These differ by approximately a
factor D4

l , where Dl is the lens distance. In Sect. 5, we there-
fore give a careful Bayesian analysis that properly weights the
distribution by correct physical priors. The high-mass end of the
range still permitted is eliminated by the failure to detect flux
from the lens using high-resolution NACO images on the VLT.
Combining all available information, we find that the host is an
M dwarf in the mass range 0.07 M� < Mhost < 0.49 M� at 90%
confidence.

2. Observational data

The microlensing event MOA-2009-BLG-387 was alerted
by the MOA collaboration (Microlensing Observations in
Astrophysics) on 24 July 2009 at 15:08 UT, HJD′ ≡ HJD −
2 450 000 = 5037.13, a few days before the first caustic en-
try. Many observatories obtained data of the event. The celes-
tial coordinates of the event are α = 17h53m50.79s and δ =
−33◦59′25′′ (J2000.0) corresponding to Galactic coordinates:
l = +356.56, b = −4.097.

The lightcurve is overall characterized by two pairs of caus-
tic crossings (entrance plus exit), which together span 12 days
(see Fig. 1). This structure is caused by the source passing over
two “prongs” of a resonant caustic (see Fig. 1 inset). Obtaining
good coverage of these caustic crossings posed a variety of chal-
lenges.

The first caustic entrance (HJD′ = 5040.3) was de-
tected by the PLANET collaboration using the South African
Astronomical Observatory (SAAO) at Sutherland (Elizabeth
1 m) who then issued an anomaly alert at HJD′ 5040.4 calling
for intensive follow-up observations, which in turn enabled ex-
cellent coverage of the first caustic exit roughly one day later.
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Fig. 1. Top: light curve of MOA-2009-BLG-387 near its peak in July 2009 and the trajectory of the source across the caustic feature on the right.
The source is going upward. We show the model with finite-source, parallax and orbital motion effects. Middle: magnitude residuals. Bottom:
zooms of the caustic features of the light curve.

The second caustic entrance occurred about seven days later
(HJD′ = 5047.1, see Fig. 1). That the caustic crossings are so far
apart in time is quite unusual in planetary microlensing events.
Since round-the-clock intensive observations cannot normally be
sustained for a week, accurate real-time prediction of the second
caustic entrance was important for obtaining intensive coverage
of this feature. In fact, the second caustic entrance was predicted
14 h in advance, with a five-hour discrete uncertainty due to
the well-known close/wide s ↔ s−1 degeneracy, where s is the
projected separation in units of the Einstein radius. The close-
geometry crossing prediction was accurate to less than one half
hour and the caustic-geometry prediction was almost identical to
the one derived from the best fit to the full lightcurve, which is
shown in Fig. 1.

The extended duration of the lightcurve anomalies indicates
a correspondingly large caustic structure. Indeed, the prelimi-
nary models found a planet/star separation (in units of Einstein
radius) close to unity, which means that the caustic is resonant
(see the caustic shape in the upper panel of Fig. 1, where the
source is going upward).

The event was alerted and monitored by the MOA collabora-
tion. It was also monitored by the Probing Lensing Anomalies
Network collaboration (PLANET; Albrow et al. 1998) from
three different telescopes: at the South African Astronomical
Observatory (SAAO), as mentioned above, as well as the
Canopus 1 m at Hobart (Tasmania) and the 60 cm of Perth
Observatory (Australia).

The Microlensing Follow Up Network (μFUN; Yoo et al.
2004) followed the event from Chile (1.3 m SMARTS telescope
at CTIO) (V, I and H band data), South Africa (0.35 m telescope
at Bronberg observatory), New Zealand (0.40 m and 0.35 m tele-
scopes at Auckland Observatory (AO) and Farm Cove (FCO)
observatory, respectively, the Wise observatory (1.0 m at Mitzpe

Ramon, Israel), and the Kumeu observatory (0.36 m telescope at
Auckland, NZ).

The RoboNet collaboration also followed the event with
their three 2 m robotic telescopes: the Faulkes Telescopes North
(FTN) and South (FTS) in Hawaii and Australia (Siding Springs
Observatory) respectively, and the Liverpool Telescope (LT) on
La Palma (Canary Islands). And finally, the MiNDSTEp collab-
oration observed the event with the Danish 1.54 m at ESO La
Silla (Chile).

Observational conditions for this event were unusually chal-
lenging, due in part to the faintness of the target and the presence
of a bright neighboring star. Moreover, the full moon passed
close to the source near the second caustic entrance. As a re-
sult, several data sets were of much lower statistical quality
and had much stronger systematics than the others. We there-
fore selected seven data sets that cover the caustic features
and the entire lightcurve: MOA, SAAO, FCO, AO, Danish,
Bronberg, and Wise. They include 118 MOA data points in I
band, 221 PLANET data points in I band, 262 μFUN data points
in unfiltered, R and I bands, and 300 MiNDSTEp data points in I
band. We also fit the μFUN CTIO I and V data to the final model,
but solely for the purpose of determining the source size. And
finally, we fit μFUN CTIO H-band data to the lightcurve in or-
der to compare the H-band source flux with the late-time H-band
baseline flux from VLT images (see Sect. 2.1). The SAAO, FCO,
AO, Danish, Bronberg, and Wise data were reduced by MDA
using the PYSIS3 software (Albrow et al. 2009). The FCO, AO,
Bronberg, and Wise images were taken in white light and suf-
fered from systematic effects related to the airmass. Such effects
were corrected by extracting lightcurves of other stars in the field
with similar colors to the lens, and assuming that these stars are
intrinsically constant.
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For each data set, the errors were rescaled to make χ2 per
degree of freedom for the best binary-lens fit close to unity. We
then eliminated the largest outlier and repeated the process until
there were no 3σ outliers.

2.1. VLT NACO Images

On 7 June 2010, we obtained high-resolution H-band images
using the NACO imager on the Very Large Telescope (VLT).
Since this was approximately 7.7 Einstein timescales after the
peak of the event, the source was essentially at the baseline. The
reduction procedures were similar to those of MOA-2008-BLG-
310, which are described in detail by Janczak et al. (2010).

To identify the source on the NACO frame, we first per-
formed image subtraction on CTIO I-band images to locate its
position on the I-band frame. We then used the NACO image
to find relatively unblended stars that could be used to align the
I-band and NACO frames. There is clearly a source at the in-
ferred position, but it lies only seven pixels (0.19′′) from an am-
bient star, which is 1.35 mag brighter than the “target” (source
plus lens plus any other blended light within the aperture). This
proximity induces a 94% correlation coefficient between the
photometric measurements of the two stars. We therefore esti-
mate the target error as 0.06 mag. In the NACO system (which
is calibrated to 2MASS using comparison stars) the target mag-
nitude is

Htarget,NACO = 18.25 ± 0.06. (1)

We have an H-band light curve (taken simultaneously with V
and I at CTIO), and so (once we have established a model fit
the light curve in Sect. 4) we can measure quite precisely the
source flux in the CTIO system, Hsource,CTIO = 20.03 ± 0.02. To
compare with NACO, we transform to the NACO system using
4 comparison stars that are relatively unblended, a process to
which we assign a 0.03 mag error, finding

Hsource,NACO = 18.35 ± 0.03. (2)

The difference, consisting of light from the lens as well as any
other blended light in the aperture, is 0.10 ± 0.07.

This excess-flux measurement could in principle be due to
five physical effects. First, it is reasonably consistent with nor-
mal statistical noise. Second, it could come from the lens. As we
show in Sect. 5, this would be consistent with a broad range of M
dwarf lenses. Third, it could be a companion to the source, and
fourth, a companion to the lens. Finally, it could be an ambient
star unrelated to the event. The fundamental importance of this
measurement is that, for all five of these possibilities, the mea-
surement places an upper limit on the flux from the lens, hence
its mass (assuming it is not a white dwarf).

3. Source properties from color–magnitude
diagram and measurement of θE

To determine the dereddened color and magnitude of the mi-
crolensed source, we put the best fit color and magnitude of
the source on an (I,V − I) instrumental color magnitude dia-
gram (CMD) (cf. Fig. 2), using instrumental CTIO data. The
magnitude and color of the target are I = 20.62 ± 0.04 and
(V − I) = −0.42 ± 0.01. The mean position of the red clump
is represented by an open circle at (I,V − I)RC = (16.36,−0.16),
with an error of 0.05 for both quantities.

(V−I) [instrumental]

I [
in

st
ru

m
en

ta
l]

−1.5 −1 −.5 0

20

18

16

14

Fig. 2. Instrumental color−magnitude diagram of the field around
MOA-2009-BLG-387. The clump centroid is shown by an open circle,
while the CTIO I and V − I measurements of the source are shown by a
filled circle.

For the absolute clump magnitude, we adopt MI,RC =
−0.25 ± 0.05 from Bennett et al. (2010). We adopt the mea-
sured bulge clump color (V − I)0,RC = 1.08 ± 0.05 (Fig. 5
of Bensby et al. 2010) and a Galactocentric distance R0 =
8.0 ± 0.3 kpc (Yelda et al. 2010). We further assume that at the
longitude (l = −3.4), the bar lies 0.7 kpc more distant than R0
(D. Nataf et al., in prep.), i.e., 8.7 kpc. From this, we derive
(I,V − I)0,RC = (14.45, 1.08) ± (0.10, 0.05), so that the dered-
dened source color and magnitude are given by: (I,V − I)0 =
Δ(I,V − I) + (I,V − I)0,RC = (18.71, 0.82). From (V − I)0, we
derive (V − K)0 = 1.78 ± 0.14 using the Bessel & Brett (1988)
color-color relations.

The color determines the relation between dereddened
source flux and angular source radius (Kervella et al. 2004)

log 2θ∗ = 0.5170 − 0.2V0 + 0.2755(V − K)0, (3)

giving θ∗ = 0.63 ± 0.06 μas. With the angular size of the source
given by the limb-darkened extended-source fit (model 5, see
Table 1), ρ∗ = 0.00202± 0.00003, we derive the angular Einstein
radius θE : θE = θ∗/ρ∗ = 0.31 ± 0.03 mas.

4. Event modeling

4.1. Overview

The modeling proceeds in several stages. We first give an
overview of these stages and then consider them each in detail.
First, inspection of the lightcurve shows that the source crossed
over two “prongs” of a caustic, or possibly two separate caustics,
with a pronounced trough in between. The source spent 1−3 days
crossing each prong and 7 days between prongs. This pattern
strongly implies that the event topology is that of a source cross-
ing the “back end” of a resonant caustic with s < 1, as illustrated
in Fig. 1. We nevertheless conducted a blind search of parameter
space, incorporating the minimal 6 standard static-binary param-
eters required to describe all binary events, as well as ρ = θ∗/θE,
the source size in units of the Einstein radius. The parameters
derived from this fit are quite robust. However, they yield only
the planet-star mass ratio q, but not the planet mass mp = qM,
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Table 1. Fit parameters for finite-source binary-lens models.

Model t0 u0 tE s q α ρ πE,N πE,E ω ds/dt
χ2 Error bars
Model 1 5042.34 0.0683 48.7 0.9152 0.01073 4.3074 0.00149 − − − −
1100 0.01 0.0005 0.4 0.0002 0.00015 0.0025 0.00002 − − − −
Model 2 5042.38 0.0770 43.9 0.9137 0.01230 4.3063 0.00174 −1.38 0.60 − −
1048 0.02 0.0015 0.5 0.0004 0.00030 0.0030 0.00005 0.25 0.07 − −
Model 3 5042.32 0.0902 38.4 0.9137 0.0135 4.302 0.00197 − − −0.252 −0.409
1032.5 0.02 0.002 0.6 0.0003 0.0002 0.002 0.00005 − − 0.1 0.04
Model 4 5042.366 0.0890 40.1 0.9134 0.0135 4.3095 0.00195 2.5 −0.31 −0.74 −0.36
1024.5 0.015 0.0010 0.5 0.0002 0.0002 0.0025 0.00003 1 0.3 0.2 0.05
Model 5 5042.36 0.0881 40.0 0.9136 0.0132 4.3099 0.00202 1.7 −0.15 −0.51 −0.37
1029.2 0.02 0.0010 0.5 0.0003 0.0002 0.0025 0.00003 1 0.5 0.3 0.05

where M is the host mass. In principle, one can measure M from
(e.g. Gould 2000)

M =
θE
κπE

(4)

where πE is the “microlens parallax” and κ ≡ 4G/(c2 AU) ∼
8.1 mas M−1� . However, while θE = θ∗/ρ is also quite robustly
determined from the static solution (and Sect. 3), πE is not.

However, the event timescale is moderately long (∼40 days).
This would not normally be long enough to measure the full mi-
crolens parallax, but might be enough to measure one dimen-
sion of the parallax vector (Gould et al. 1994). Moreover, the
large separation in time of the caustic features could permit de-
tection of orbital motion effects as well (Albrow et al. 2000).
We therefore incorporate these two effects, first separately and
then together. We find that each is separately detected with high
significance, but that when combined they are partially degen-
erate with each other. In particular, one of the two components
of the microlensing parallax vector πE is highly degenerate with
one of the two measurable parameters of orbital motion. It is of-
ten the case that one or both components of πE are poorly mea-
sured in planetary microlensing events. The usual solution is to
adopt Bayesian priors for the lens-source relative parallax and
proper motion, based on a Galactic model. We also pursue this
approach, but in addition we consider separately Bayesian pri-
ors on the orbital parameters as well. We show that the results
obtained by employing either set of priors separately are con-
sistent with each other, and we therefore combine both sets of
priors.

4.2. Static binary

A static binary-lens point-source model involves six microlens-
ing parameters: three related to the lens-source kinematics
(t0, u0, tE), where t0 is the time of lens-source closest approach,
u0 is the impact parameter with respect to the center of mass
of the binary-lens system and tE is the Einstein timescale of
the event, and three related to the binary-lens system (q, s, α),
where q and s are the planet-star mass ratio and separation in
units of Einstein radius, respectively, and α is the angle between
the trajectory of the source and the star-planet axis. For n = 7
observatories, there are 2n photometric parameters, n× (Fs, Fb),
which correspond to the source flux and blend flux for each
data set. These are usually determined by linear regression. The
radius of the source, ρ, in Einstein units, can also be derived
from the model provided that the source passes over, or suffi-
ciently close to, a caustic structure. To optimize the fit in terms

of computing time, we adopt different methods for implement-
ing finite-source effects, depending on the distance between the
source and the caustic features in the sky plane. When the source
is far from the caustic (in the wings of the lightcurve), we treat
it as a point source. In the caustic crossing regions, we use a
finite-source model based on the Green-Stokes theorem (Gould
& Gaucherel 1997). Numerical implementation of this method
is adapted from the code that was originally devised for Albrow
et al. (2001) and refined in An et al. (2002). This technique,
which reduces the 2-dimensional integral over the source to a
1-dimensional integral over its boundary and so is extremely ef-
ficient, implicitly assumes that the source has uniform surface
brightness, i.e., is not limb darkened. We then include limb-
darkening in the final fit, as described in Sect. 4.6. Lastly, in
the intermediary regions, we use the hexadecapole approxima-
tion (Pejcha & Heyrovsky 2009; Gould 2008), which consists
of calculating the magnification of 13 points distributed over the
source in a characteristic pattern. To fit the microlensing param-
eters, we perform a Markov Chain Monte Carlo (MCMC) fitting
with an adaptive step-size Gaussian sampler (Doran & Muller
2004; Dong et al. 2009a). After every 200 links in the chain, the
covariance matrix between the MCMC parameters is calculated
again. We proceed to five runs corresponding to five different
configurations: without either parallax or orbital motion, with
parallax only, with orbital motion only, with both effects, and fi-
nally with both effects and limb-darkening effects included. The
results are presented in Sect. 4.7.

The static binary search without parallax leads to the follow-
ing parameters: q = 0.0107, s = 0.9152, ρ = 0.00149, and then
θE = 0.42 mas, implying

Mπrel =
θ2E
κ
= 22 M� μas. (5)

This product is consistent, for example, with a 1 M� mass host in
the Galactic bulge or a 0.025 M� mass brown-dwarf star at 1 kpc,
either of which would have very important implications for the
nature of the q = 0.0107 planet. We therefore first investigate
whether the microlens parallax can be measured.

4.3. Parallax effects

When observing a microlensing event, the resulting flux for each
observatory-filter i can be expressed as,

Fi(t) = Fs,iA[u(t)] + Fb,i, (6)

where Fs,i is the flux of the unmagnified source, Fb,i is the back-
ground flux and u(t) is the source-lens projected separation in

A102, page 5 of 16



A&A 529, A102 (2011)

2 1 0 -1 -2

-2

0

2

4

2 1 0 -1 -2

-2

0

2

4

2 1 0 -1 -2

-2

0

2

4

Fig. 3. The πE contours at 1, 2, 3, and 4σ in black, red, orange, and
green, respectively. As a comparison, the gray points show the approx-
imate 3σ region of Model 4, i.e., with both parallax and orbital motion
effects, with the 1σ contour shown in black. The black cross shows the
(0, 0) coordinates.

the lens plane. The source-lens projected separation in the lens
plane, u(t) of Eq. (6), can be expressed as a combination of two
components, τ(t) and β(t), its projections along the direction of
lens-source motion and perpendicular to it, respectively:

u(t) =
√
τ2(t) + β2(t). (7)

If the motion of the source, lens and observer can all be consid-
ered rectilinear, the two components of u(t) are given by

τ(t) =
t − t0

tE
; β(t) = u0. (8)

To introduce parallax effects, we use the geocentric formalism
(An et al. 2002; Gould 2004) which ensures that the three stan-
dard microlensing parameters (t0, tE, u0) are nearly the same as
for the no-parallax fit. Hence, two more parameters are fitted
in the MCMC code, i.e., the two components of the parallax
vector, πE, whose magnitude gives the projected Einstein radius,
r̃E = AU/πE and whose direction is that of lens-source relative
motion. The parallax effects imply additional terms in Eq. (8)

τ(t) =
t − t0

tE
+ δτ(t); β(t) = u0 + δβ(t) (9)

where

(δτ(t), δβ(t)) = πEΔp� = (πE.Δp�, πE × Δp�) (10)

and Δp� is the apparent position of the Sun relative to what it
would have been assuming rectilinear motion of the Earth.

The configuration with parallax effects corresponds to
Model 2 of Table 1, The resulting diagram showing the north and
east components of πE is presented in Fig. 3. Taking the parallax
effect into account substantially improves the fit (Δχ2 = −52).
The best fit allowing only for parallax is πE = (−1.38, 0.60).
There is a hard 3σ lower limit πE > 0.6 and a 3σ upper limit
πE < 1.9. If taken at face value, these results would imply
0.025 < M/M� < 0.075, i.e., a brown dwarf host with a gas gi-
ant planet. However, as can be seen from Fig. 3, these results are
inconsistent with the results from Model 4, which takes account
of both parallax and orbital motion. This inconsistency reflects
an incorrect assumption in Model 2, namely that the planet is not
moving.
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Fig. 4. Orbital parameters of solutions at 1, 2, 3, and 4σ in black, red,
orange, and green, respectively. As a comparison, the gray points show
the 3σ region of Model 4, i.e., with both parallax and orbital motion
effects, with the 1σ contour shown in black.

4.4. Orbital motion effects

For the planet orbital motion, we use the formalism of Dong
et al. (2009a). The lightcurve is capable of constraining at most
two additional orbital parameters that can be interpreted as the
instantaneous velocity components in the plane of the sky. They
are implemented via two new MCMC parameters ds/dt and ω,
which are the uniform expansion rate in binary separation s and
the binary rotation rate α,

s = s0 + ds/dt (t − t0) α = α0 + ω (t − t0) . (11)

These two effects induce variations in the shape and orientation
of the resonant caustic, respectively. To ensure that the resulting
orbital characteristics are physically plausible, we can verify for
any trial solution that the projected velocity of the planet is not
greater than the escape velocity of the system, v⊥ < vesc for a
given assumed mass and distance, where (Dong et al. 2009a)

v⊥ =
√

(ds/dt)2 + (ωs)2DlθE (12)

and

vesc =

√
2GM

r
≤ vesc,⊥ =

√
2GM

r⊥
, r⊥ = sθEDl. (13)

The configuration with only orbital motion corresponds to the
Model 3 of Table 1. The resulting diagram showing the solution
for the two orbital parametersω and ds/dt is presented in Fig. 4.
Taking the orbital motion of the planet into account substantially
improves the fit (Δχ2 = −67.5).

4.5. Combined parallax and orbital motion

In this section we model both parallax and orbital motion ef-
fects, which is called Model 4 in Table 1. Taking these two ef-
fects into account results in only a modest improvement in χ2

compared to the cases for which the effects are considered in-
dividually (χ2

both − χ2
orbital = −9). The triangle diagram pre-

sented in Fig. 5 shows the 2-parameter contours between the
four MCMC parameters πE,N, πE,E, ω and ds/dt introduced in
Sects. 4.3 and 4.4. The best fit is (πE,N, πE,E) = (2.495,−0.311)
and (ω, ds/dt) = (−0.738,−0.360). This would lead to a host star
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Fig. 5. Parallax and orbital motion parameters
of solutions contours at 1, 2, 3, and 4σ. The
black crosses show the (0, 0) coordinates.

of 0.015 M� at a distance Dl = 1.11 kpc and a 0.21 Jupiter mass
planet with a projected separation of 0.32 AU.

This small improvement in χ2 can be explained by a degen-
eracy between the north component of πE and the orbital param-
eter ω, as shown in Fig. 5. In fact, the actual degeneracy is be-
tween πE,⊥ and ω, where πE,⊥ (described by Gould 2004) is the
component of πE that is perpendicular to the instantaneous di-
rection of the Earth’s acceleration, i.e., that of the Sun projected
on the plane of the sky at the peak of the event. This acceler-
ation direction is φ = 257.4◦ (north through east). Hence, the
perpendicular direction is φ− 90◦ = 192.6◦, which is quite close
to the 195.7◦ degeneracy direction in the πE,N and πE,E diagram.
Since πE,⊥ is very close (only 13◦) from north, πE,N is a good
approximation for it.

Indeed, πE,‖ generates an asymmetry in the lightcurve be-
cause, to the extent that the source-lens motion is in the direction
of the Sun-Earth axis, the event rises faster than it falls (or vice
versa). This effect is relatively easy to detect. But to the extent
that the motion is perpendicular to this axis, the Sun’s acceler-
ation induces a parabolic deviation in the trajectory. To lowest
order, this produces exactly the same effect as rotation of the
lens geometry (which is a circular deviation). Hence, the degen-
eracy between πE,⊥ and ω can only be broken at higher order.
This degeneracy was discussed in the context of point lenses in
Gould et al. (1994), Smith et al. (2003a), and Gould (2004).
In the point-lens case, the πE,⊥ degeneracy appears nakedly (be-
cause the lens system is invariant under rotation). In the present
case, the rotational symmetry is broken. In case orbital motion
is ignored, it thus may appear that parallax is measured more
easily in binary events, as originally suggested by An & Gould
(2001). But in fact, as shown in the present case, once the caus-
tic is allowed to “rotate” (lowest order representation of orbital
motion), then the πE,⊥ degeneracy is restored.

4.6. Limb-darkening implementation

Most of the calculations in this paper are done using Stokes’ the-
orem, which greatly speeds up the computations by reducing a
2-dimensional integral to one dimension. However, this method
implicitly assumes that the source has uniform surface bright-
ness, whereas real sources are limb darkened. In the linear ap-
proximation, the normalized surface brightness can be written

W(z; Γ) = 1 − Γ
(
1 − 3

2

√
1 − z2

)
, (14)

where Γ is the limb-darkening coefficient depending on the con-
sidered wavelength, and z is the position on the source divided
by the source radius.

We adopt this approach because we expect that the solutions
with and without limb darkening will be nearly identical, except
thatthe uniform source should appear smaller by approximately
a factor

ρuni

ρld



√∫
dz2z2W(z : Γ)

/∫
dz2z2 =

√
1 − Γ

5
(15)

because this ratio preserves the rms radial distribution of light.
To test this conjecture, we approximate the surface as a

set of 20 equal-area rings, with the magnification of each
ring still computed by Stokes’ method. The surface bright-
ness of the ith ring is simply W(zi) where zi is the mid-
dle of the ring. The limb-darkening coefficients for the un-
filtered data have been determined by interpolation, from V ,
R, I and H limb-darkening coefficients. We find from the
CMD that the source star has (V − I)0 = 0.82, so roughly
a G7 dwarf or slightly cooler. We adopt a temperature of
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T = 5500 K. We thus obtain the following limb-darkening
parameters (uV , uR, uI , uH) = (0.7117, 0.6353, 0.5507, 0.3659),
where u = 3Γ/(Γ + 2) (Afonso et al. 2000). Then
(ΓV , ΓR, ΓI , ΓH) = (0.6220, 0.5373, 0.4497, 0.2778). For a
given observatory/filter (or possibly unfiltered), we then com-
pare (Robserved − ICTIO) to (VCTIO − ICTIO), considering that
ICTIO = 0.07V + 0.93I and that approximately V =
2R − I and deduce empirical expression for the correspond-
ing Γ coefficients. The Γ coefficients for all the observatories
then become (ΓMOA, ΓSAAO, ΓFCO, ΓAO, ΓDanish, ΓBronberg, ΓWise) =
(0.493, 0.45, 0.52, 0.51, 0.45, 0.53, 0.49). Substituting, a mean
Γ ∼ 0.47 into Eq. (15), we expect ρ to be ∼5% larger when
limb-darkening is included.

4.7. Results summary

We summarize the best-fit results for the five different models
presented in Sect. 4 in Table 1. The five models are Model 1:
finite-source binary-lens model with neither parallax nor orbital
motion effects; Model 2: finite-source binary-lens model with
parallax effects only; Model 3: finite-source binary-lens model
with orbital motion effects only; Model 4: finite-source binary-
lens model with both parallax and orbital motion effects; and
Model 5: finite-source binary-lens model with both parallax and
orbital motion effects and limb-darkening.

Note in particular that Models 4 and 5 agree within ∼1σ for
all parameters, except that ρ is ∼7% greater in the limb-darkened
case (Model 5).

5. Bayesian analysis

The Markov Chain used to find the solutions illustrated in Fig. 5
is constructed (as usual) by taking trial steps that are uniform in
the MCMC variables, including t0, u0, and tE. This amounts to
assuming a uniform prior in each of these variables. In the case
of the three variables t0, u0, and tE, the solution is extremely
well constrained, so it makes hardly any difference which prior
is assumed. Whenever this is the case, Bayesian and frequen-
tist orientations lead to essentially the same results. However,
as shown in Fig. 5, πE is quite poorly constrained: at the 2σ
level, the magnitude of πE varies by more than an order of mag-
nitude. Since the lens distance is related to the microlens paral-
lax by Dl = AU/(θEπE + πS), where πS = AU/Ds, this amounts
to giving equal prior weight to a tiny range of distances nearby
and a huge range of distances far away. But the actual weighting
should have the reverse sign, primarily because a fixed distance
range corresponds to far more volume at large than small dis-
tances. In fact, a Galactic model should be used to predict the a
priori expected rate of microlensing events, which depends not
only on the correct volume element but also on the density and
velocity distributions of the lens and the source as well.

Similarly, a Keplerian orbit can be equally well character-
ized by specifying the seven standard Kepler parameters or six
phase-space coordinates at a given instant of time, plus the host
mass. The latter parametrization is more convenient from a mi-
crolensing perspective because microlensing most robustly mea-
sures the two in-sky-plane Cartesian spatial coordinates (s cosα
and s sinα) and the two in-plane Cartesian velocity coordinates
(ds/dt and sω), while the mass is directly given by microlens
variables M = θE/κπE. However, the former (Kepler) variables
have simple well-established priors. By stepping equally in mi-
crolens parameters, one is effectively assuming uniform priors in
these variables, whereas one should establish the priors accord-
ing to the Kepler parameters.

In principle, one would simultaneously incorporate both sets
of priors (Galactic and Kepler), and we do ultimately adopt this
approach. However, it is instructive to first apply them separately
to determine whether these two sets of priors are basically com-
patible or are relatively inconsistent.

Formally, we can evaluate the posterior distribution f (X|D),
including both prior expectations from (Galactic and/or
Keplerian) models and posterior observational data using Bayes’
Theorem:

f (X|D) =
f (D|X) f (X)

f (D)
· (16)

Here f (D|X) is the likelihood function over the data D for a
given model X, f (X) is the prior distribution containing all ex
ante information about the parameters X available before ob-
serving the data, and f (D) =

∫
X

f (D|X) f (X)dX. In the present
context, this standard Bayes formula is interpreted as follows:
the density of links on the MCMC chain directly gives f (D|X),
while f (X) encapsulates the parameter priors, including both
the underlying rate of events in a “natural physical coordinate
system” in which these priors assume a simple form and the
Jacobian of the transformation from this “physical” system to
the “natural microlensing parameters” that are directly modeled
in the lightcurve analysis.

It is not obvious, but we find below that the coordinate trans-
formations for Galactic and Kepler models actually factor, so we
can consider them independently.

5.1. Galactic model

Applying the generic rate formula Γ = nσv to microlensing rates
as a function of the independent physical variables (M,Dl, μ),
yields

fGal(X) ∝ d4Γ

dDL dM d2μ
= ν(x, y, z) (2RE) vrel f (μ)g(M), (17)

where the spatial positions (x, y, z), the physical Einstein ra-
dius RE, and the lens velocity relative to the observer-source line
of sight vrel are all regarded as dependent variables of the four
variables shown on the l.h.s., plus the two angular coordinates.
Here ν(x, y, z) is the local density of lenses, g(M) is the mass
function [we will eventually adopt g(M) ∝ M−1], and f (μ) is
the two-dimensional probability function for a given source-lens
relative proper motion, μ. Since vrel = μDl and RE = DlθE, this
can be rewritten in terms of microlensing variables,

d4Γ

dtE dθE d2πE
=

d4Γ

dDL dM d2μ
× μ
πE

∣∣∣∣∣∂ (DL,M, μ)
∂ (tE, θE, πE)

∣∣∣∣∣
= 2D2

l θEμν(x, y, z) f (μ)g(M) × 2
AU

D2
l

M πrel μ
2

tEθEπ2
E

,

where M = θE/κπE, Dl = AU/(πrel + πs), πrel = θEπE, and μ =
θE/tE are now regarded as dependent variables. We note that

∂ (DL,M, μ)
∂ (tE, θE, πE)

=
∂ (πrel,M, μ)
∂ (tE, θE, πE)

dDL

dπrel
=

2πrel M μ
tE θE πE

D2
L

AU
,

where the last evaluation follows from the general theorem:

yi =
∏

j

x
αi j

j =⇒
∂ (yi)

∂
(
x j

) = ∂ (ln yi)

∂
(
ln x j

) ∏
i yi∏
j x j
= |α|

∏
i yi∏
j x j
·
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Table 2. Density distribution for the bulge and disk models.

Location Model Distribution (in M� pc−3)
Bulge Dwek ν(rs) = 1.23 exp(−0.5r2

s )
Disk Zheng ν(R, z) = 1.07 exp(−R/H)[(1 − β)(−|z|/h1) + β exp(−z/h2)]

Finally, Eq. (17) reduces to

d4Γ

dtE dθE d2πE
=

4
AU
ν(x, y, z) f (μ)[g(M)M]

D4
l μ

4

πE
· (18)

The variables on the l.h.s. of Eq. (18) are essentially the Markov
chain variables in the microlensing fit procedure1. The distribu-
tion of MCMC links applied to the data can be thought of as the
posterior probability distribution of the Markov-chain variables
under the assumption that the prior probability distribution in
these variables is uniform. In our case, the prior distribution is
not uniform, but is instead given by the r.h.s. of Eq. (18). We
therefore must weight the output of the MCMC by this quantity,
which is the specific evaluation of f (X) in Eqs. (16) and (17).

As mentioned above, we adopt g(M) ∝ M−1, so the term
in square brackets disappears. We evaluate ν(x, y, z) and f (μ) as
follows.

5.1.1. Lens-source relative proper motion distribution f (μ)

To compute the relative proper motion probability, we assume
that the velocity distributions of the lenses and sources are
Gaussian f (vy, vz) = f (vy) f (vz) where

f
(
μy

)
= f

(
vy

) dvy
dμy
= DL

1√
2πσ2

y

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
vy − ṽy

)2

2σ̃y2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

and a similar distribution for f (μz). Here vy and vz are compo-
nents of the projected velocity u derived from the MCMC fit,
which is expressed by u = μDl, where

μ =
πE

πE

θE

tE
· (20)

The expected projected velocity which appears in Eq. (19) is
defined as

ũ = ul −
[
us

Dl

Ds
+ uo

Dls

Ds

]
(21)

where Dl, Ds are respectively the lens and source distances from
the observer and Dls the lens-source distance. The velocity is ex-
pressed in the (x, y, z) coordinate system, centered on the center
of the Galaxy, where x and z axes point to the Earth and the North
Galactic pole, respectively. As given in Han & Gould (1995),
we adopt uz,disk = uz,bulge = 0 and σz,disk = 20 km s−1, σz,bulge =

100 km s−1 for the z component of the velocity. For the y direc-
tion, uy,disk = 220 km s−1, uy,bulge = 0 and σy,disk = 30 km s−1,
σy,bulge = 100 km s−1 depending on whether the lens is situated
in the disk or in the bulge. We also consider the asymmetric drift
of the disk stars by subtracting 10 km s−1 from uy,disk. The celes-
tial north and east velocities of the Earth seen by the Sun at the
time of the event are uE = (vE,E, vE,N) = (+22.95,−3.60) km s−1.

1 In fact, ρ is used in place of θE, but this makes no difference, since
θE ∝ ρ.

In the Galactic frame, the galactic north and east components of
the Earth velocity become

vE,North Gal = vE,N cos 59.7◦ − vE,E sin 59.7◦, (22)

vE,East Gal = vE,N sin 59.7◦ + vE,E cos 59.7◦. (23)

The velocity of the Sun in the Galactic frame is u� = (7,
12) km s−1 + (0, vcirc), where vcirc = 220 km s−1, from which we
deduce the velocity vo of the observer in the Galactic frame by
adding the Earth velocity from Eq. (22).

5.1.2. Density distribution ν(x,y,z)

The density distribution, ν(x, y, z), is given at the lens coordi-
nates (x, y, z) in the Galactic frame. For this distribution, we
adopt the model of Han & Gould (2003), which is based primar-
ily on star counts, and, without any adjustment, reproduces the
microlensing optical depth measured toward Baade’s window.
The density models are given in Table 2. The disk parameters
are H = 2.75 kpc, h1 = 156 pc, h2 = 439 pc, and β = 0.381,
where R ≡ (x2+y2)1/2. For the barred (anisotropic) bulge model,
rs = ([(x′/x0)2 + (y′/y0)2]2 + (z′/z0)4)1/4. Here the coordinates
(x′, y′, z′) have their center at the Galactic center, the longest
axis is the x′, which is rotated 20◦ from the Sun-GC axis to-
ward positive longitude, and the shortest axis is the z′ axis. The
values of the scale lengths are x0 = 1.58 kpc, y0 = 0.62 kpc and
z0 = 0.43 kpc respectively. For the bulge, Han & Gould (2003)
normalize the “G2” K-band integrated-light-based bar model of
Dwek et al. (1995) using star counts toward Baade’s window
from Holtzman et al. (1998) and Zoccali et al. (2000). For the
disk, they incorporate the model of Zheng et al. (2001), which is
a fit to star counts.

In the calculation, we sum the probabilities of disk and bulge
locations for the lens. We set the limits of the disk range to
be [0, 7] kpc from us and [5, 11] kpc for the bulge range. We
also apply the bulge density distribution to the source, in the
[6.5, 11] kpc range. Rigorously, because we already know the
dereddened flux of the source, we should have derived a distri-
bution of sources from the luminosity distribution of bulge stars
combined with their distance. However, as we do not know the
precise distribution of bulge luminosities at fixed color, we only
consider the density distribution of sources as a function of their
position in the bulge only. Because the stellar density drops off
very rapidly from the peak, the source is effectively localized as
being close to the Galactocentric distance.

5.2. Orbital motion model

In addition to the Galactic model, we build a Keplerian model
to put priors on the orbital motion of the planet. To extract the
orbital parameters from the microlensing parameters, we refer
to the appendix of Dong et al. (2009a). Given that from the light
curve of the event we have access to the instantaneous projected
velocity and position of the planet for only a short time, we
consider a circular orbit to model the planet motion. The distor-
tions of the light curve are modeled by ω and ds/dt, which then
specify the variations in orientation and shape of the resonant
caustic, respectively. These quantities are defined in Sect. 4.4.
Since r⊥ = DlθEd is the projected star-planet separation, we
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evaluate the instantaneous planet velocity in the sky plane, with
r⊥γ⊥ = r⊥ω the velocity perpendicular to the planet-star axis
and r⊥γ‖ = r⊥(ds/dt)/s the velocity parallel to this axis. We de-
fine the î, ĵ, k̂ directions as the instantaneous star-planet axis on
the sky plane, the direction into the sky, and k̂ = î × ĵ. In this
frame, the planet is moving among two directions, defined by
the angles θ and φ, which are effectively a (complement to a) po-
lar angle and an azimuthal angle, respectively. Specifically, φ is
the angle between the star-planet-observer (r⊥ = a sin φ), and θ
characterizes the motion in the direction of the velocity along k̂.
Then the instantaneous velocity of the planet is

v =

√
GM

a

[
cos θk̂ + sin θ

(
cosφî − sin φ ĵ

)]
(24)

where a is the semimajor axis. Thus we obtain γ⊥ =
√

GM
a3

cos θ
sinφ

and γ‖ =
√

GM
a3 sin θ cot φ. The Jacobian expression to transform

from P(s, γ⊥, γ‖) to P(a, φ, θ) is

J =
∂(a, φ, θ)
∂
(
s, γ⊥, γ‖

) = a3

GM
tan2 φ

(
1
2
− sin2 θ tan2 φ

)−1

RE. (25)

As explained in Dong et al. (2009a), for one set of microlensing
parameters, there are two degenerate solutions in physical space.
In the orbital model, we consider the two solutions to constrain
the light curve fit, each with its own separate probability.

From the definition of the two angles, the transformation
of the polar system (a, π/2 − θ, φ) contains the quantity sin θ
and so the Jacobian includes the factor cos θ from d(sin θ)dφ =
dθdφ cos θ. Moreover, we adopt a flat distribution on ln(a), im-
plying the factor 1/a in the Jacobian expression. Then,

J =
∂(ln(a), φ, sin θ)
∂
(
s, γ⊥, γ‖

) =
r2⊥

GM
cos θ

cos2 φ

(
1
2
− sin2 θ tan2 φ

)−1

RE.

(26)

Note that the terms sin θ and cos θ in the denominators of
Eq. (26) correct an error in Dong et al. (2009a).

5.3. Constraints from VLT

As foreshadowed in Sect. 2.1, the VLT NACO flux measurement
places upper limits on the flux from the lens, hence on its mass
(assuming it is not a white dwarf). However, we begin by assum-
ing that the excess light is caused by the lens. We do so for two
reasons. First, this is actually the most precise way to enforce an
upper limit on the lens flux. Second, it is of some interest to see
what mass range is “picked out” by this measurement, assuming
the excess flux is due to the lens.

The first point to note is that, if the lens contributes any
significant flux, then it lies behind most or all of the dust seen
toward the source. For example, if the lens mass is just M =
0.15 M� (which would make it quite dim, MH > 8), then it would
lie at distance DL = AU/(θ2E/κM+AU/DS) = 4.9 kpc, where we
have adopted the central values θE = 0.31 mas and DS = 8.7 kpc
for this exercise. More massive lenses would be farther.

Next we estimate AH = 0.4 from the measured clump color
(V − I)cl = 2.10, assuming an intrinsic color of the red giant
clump of (V − I)0,cl = 1.08 (Bensby et al. 2010) and adopting for
this line of sight AH/E(V − I) = 0.40.

Finally, for the relation between M and MH, we consult the
library of empirically-calibrated isochrones of An et al. (2007).
We adopt the oldest isochrones available (4 Gyr), since there is

virtually no evolution after this age for the mass range that will
prove to be of interest M < 0.7 M�. Moreover, in this mass
range, the isochrones hardly depend on metallicity within the
range explored (−0.3 < [Fe/H] < +0.2).

For each mass and distance considered below, we then cal-
culate HL = MH + AH + 5 log(DL/10 pc) and combine the cor-
responding flux with HS = 18.35 to obtain Hpred. We then calcu-
late a likelihood factor LH = exp[−(Hpred − Hobs)2/2σ2

H], where
Hobs = 18.25 and σH = 0.07, as discussed in Sect. 2.1.

For fiducial values DS = 8.7 kpc and θE = 0.31 mas, this
likelihood peaks at M = 0.42 M�, but it does so very gently.
The suppression factor is just LH ∼ 0.7 at M = 0.21 M� and
M = 0.52 M�. At lower masses, even if there were zero flux,
the suppression would never get lower than LH = 0.36, simply
because the excess-flux measurement is consistent with zero at
1.4σ. But at higher mass, the expected flux quickly becomes in-
consistent. For example, LH(0.65 M�) = 0.07.

Hence, by treating the flux measurement as an excess-flux
“detection”, we impose the “upper limit” on mass in a graceful
manner. Moreover, as regards the upper limit, this approach re-
mains valid when we relax the assumption that the excess flux is
solely due to the lens. That is, even if there are other contribu-
tors, the likelihood of a given high-mass lens being compatible
with the flux measurement can only go down.

However, the same reasoning does not apply at the low-mass
limit. For example, if the excess flux came from a source com-
panion or an ambient star, then a brown-dwarf lens would be
fully compatible with the flux measurement. Nevertheless, this is
quite a minor effect because, in any event, the suppression factor
would not fall below 0.36. To account for other potential sources
of light, we impose a minimum suppression factor LH,min = 0.5
at the low-mass end.

5.4. Combining Galactic and Kepler priors and adding VLT
constraints

In this section, we impose the priors from the Galactic and
Kepler models and add the constraints from the VLT flux mea-
surement. We defer the VLT constraints to the end because they
do not apply to the special case of white-dwarf lenses.

We begin by examining the role of the various priors sep-
arately to determine the level of “tension” between these and
the χ2 derived from the light curve alone. We do so because each
prior involves different physical assumptions, and tension with
the light curve may reveal shortcomings in these assumptions.

The Kepler priors involve two assumptions, first that the
planetary system is viewed at a random orientation (which is
almost certainly correct) and second that the orbit is circular
(which is almost certainly not correct). We will argue further
below that the assumption of circular orbits has a modest im-
pact. In any event, we want to implement the Kepler priors by
themselves.

The Galactic priors really involve two sets of assumptions.
The more sweeping assumption is that planetary systems are dis-
tributed with the same physical-location distribution and host-
mass distribution as are stars in the Galaxy. We really have no
idea whether this assumption is true or not. For example, it could
be that bulge stars do not host planets. The assumptions about
host mass and physical location are linked extremely strongly
in a mathematical sense (even if they prove to be unrelated
physically) because θE is well-measured, and θ2E = κM πrel. Thus,
we must be cautious about this entire set of assumptions.

However, the Galactic priors also contain another factor
f (μ), in which we can have greater a priori confidence. This
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Fig. 6. Bayesian analysis results. Each panel
shows host mass M versus lens-source relative
parallax πrel, with 1, 2, 3, and 4σ contours un-
der two different conditions. The solid black
contours are derived from the light curve alone,
without any priors. The colored symbols show
contour levels after applying various priors, re-
spectively Galactic proper motion only, Kepler
only, full Galactic and Kepler priors, and full
Galactic and Kepler priors, plus VLT imaging
constraints. The proper-motion and Kepler pri-
ors are fully consistent with the light curve,
but there is strong tension between between the
distance-related priors and the lightcurve, with
the former favoring high masses and small lens-
source separations. The highest part of this dis-
puted mass range, M > 0.7 M�, is essentially
ruled out by the VLT imaging constraint (lower
right).

prior basically assumes that planetary systems at a given dis-
tance (regardless of how common they are at that distance) will
have similar kinematics to the general stellar population at the
same distance. The scenarios in which this assumption would be
strongly violated, while not impossible, are fairly extreme.

Therefore we begin by imposing proper-motion-only and
Kepler-only priors in the top two panels of Fig. 6, which plots
host mass M versus lens-source relative parallax πrel. We choose
to plot πrel rather than DL because it is given directly by mi-
crolensing parameters πrel = πEθE. The 1, 2, 3, and 4σ contours
from the χ2 based on the light curve only are shown in black.
Each of these priors is consistent with the light curve at the 1σ
level, so we combine them and find that they still display good
consistency. In the lower left panel, we combine the full Galactic
and Kepler priors. These tend to favor much heavier, more dis-
tant lenses, which are strongly disfavored by the lightcurve, pri-
marily because of the factor D4

l /πrel in Eq. (18). Indeed masses
M > 0.7 M� will be effectively ruled out by high-resolution VLT
imaging, further below.

When combining Galactic and Kepler priors, we simply
weight the output of the MCMC by the product of the factors
corresponding to each. This is appropriate because, while the
6 × 6 matrix, transforming the full set of microlensing param-
eters (s, γ⊥, γ‖, tE, θE, πE) to the full set of physical parameters
(a, φ, θ,M,DL, μ), is not block diagonal, the Jacobian neverthe-
less factors as

∂ (a, φ, θ,M,DL, μ)
∂
(
s, γ⊥, γ‖, tE, θE, πE

) = ∂(a, φ, θ)
∂
(
s, γ⊥, γ‖

) × ∂ (M,DL, μ)
∂ (tE, θE, πE)

·

Hence, the full weight, f (X) in Eq. (16) is simply the product of
the two found separately for the Galactic and orbital priors.
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Fig. 7. Probability as a function of host mass after applying the Galactic
and Kepler priors (red) and then adding the constraints from VLT ob-
servations (black).

Figure 7 shows the host-mass probability distribution be-
fore (red) and after (black) applying the constraint from VLT
imaging to the previous analysis incorporating both Galactic and
Kepler priors. The 90% confidence interval is marked. The high
mass solutions toward the right are strongly disfavored by the
lightcurve (see Fig. 6), but the Galactic prior for them is so strong
that they have substantial posterior probability. However, these
solutions are heavily suppressed by the VLT flux limits. The hsot
is most likely to be an M dwarf. The lower right panel of Fig. 6
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Table 3. Physical parameters.

Model M mp DL Ekin/Epot P a i
M� MJup kpc yr AU deg

Kepler 0.04 0.51 2.29 0.34 2.92 1.39 39
90% conf (0.01, 0.12) (0.19, 1.69) (0.98, 4.79) (0.07, 0.44) (1.37, 5.42) (0.18, 2.10) (24, 74)
Galactic 0.31 4.38 6.83 0.54 3.73 2.12 60
90% conf (0.07, 6.37) (1.03, 89.61) (3.65, 9.37) (0.06, 1.81) (1.37, 6.26) (1.06, 3.01) (40, 79)
Gal+Kep 0.28 3.82 6.44 0.28 4.99 2.04 50
90% conf (0.07, 2.22) (1.00, 30.82) (3.59, 9.38) (0.09, 0.37) (2.68, 7.27) (1.11, 3.04) (38, 72)
Gal+VLT 0.25 3.55 6.42 0.69 4.90 1.62 58
90% conf (0.07, 0.53) (1.04, 7.52) (3.62, 8.34) (0.12, 1.99) (3.50, 6.79) (0.98, 2.45) (42, 84)
G+K+VLT 0.19 2.56 5.69 0.27 5.43 1.82 52
90% conf (0.07, 0.49) (0.98, 6.71) (3.50, 7.87) (0.10, 0.36) (3.82, 7.58) (1.09, 2.68) (40, 72)

shows the 2-dimensional (M, πrel) probability distribution for di-
rect comparison with the results from applying various combi-
nations of priors.

5.5. Bayesian results for physical parameters

Table 3 shows the median estimates and 90% confidence inter-
vals for six physical parameters (plus one physical diagnostic) as
more priors and constraints are applied. The bottom row, which
includes full Galactic and Kepler priors, plus constraints from
VLT photometry shows our adopted results. The six physical pa-
rameters are the host mass M, the planet mass mp, the distance
of the system DL, the period P, the semi-major axis a, and the
orbital inclination i. The last three assume a circular orbit. For
rows 2 and 4 (which do not apply Kepler constraints), the values
shown for (P, a, i) summarize the results restricted to links in the
chain that are consistent with a circular orbit, while the first four
columns summarize all links in the chain. The key results are

0.071 M� < Mhost < 0.49 M� (90% confidence) (27)

and corresponding to this, mp = qM, where q = 0.00132 ±
0.00002, i.e.,

1.0 MJup < mp < 6.7 MJup (90% confidence), (28)

3.8 yr < P < 7.6 yr (90% confidence) (29)

1.1 AU < a < 2.7 AU (90% confidence) (30)

with the medians at M = 0.19 M�, mp = 2.6 MJup, P = 5.4 yr,
a = 1.8 AU. That is, the host is an M dwarf with a super-Jovian
massive planetary companion. For completeness, we note that
in obtaining these results, we have implicitly assumed that the
probability of a star having a planet with a given planet-star mass
ratio q and semi-major axis a is independent of the host mass and
distance.

5.6. White dwarf host?

When we applied the VLT flux constraint, we noticed that it
would not apply to white-dwarf hosts. Is such a host other-
wise permitted? In principle, the answer is “yes”, but as we
now show, it is rather unlikely. The WD mass function peaks at
about M ∼ 0.6 M�, which corresponds to an Mprog ∼ 2 M� pro-
genitor. If the progenitor had a planet, it would have increased
its semi-major axis by a factor a/ainit = Mprog/M ∼ 3.3 as
the host adiabatically expelled its envelope. We find that, for
M = 0.6 M�, the orbital semi-major axis is fairly tightly con-
strained to a = 2.3 ± 0.3 AU, implying ainit = 0.7 ± 0.1 AU.
It is unlikely that such a close planet would survive the AGB
phase of stellar evolution. Of course, a white dwarf need not be
right at the peak. For lower mass progenitors, the ratio of initial

to final masses is lower, which would enhance the probability of
survival. But it is also the case that such white dwarfs are rarer.

5.7. Physical consistency checks of bayesian analysis

The results reported here have been derived with the aid of fairly
complicated machinery, both in fitting the light curves and in
transforming from microlensing to physical parameters. In par-
ticular, we have identified a strong mathematical degeneracy be-
tween the parameters πE,N and ω, which arise from orbital mo-
tion of the Earth and the planet, respectively. When considering
“MCMC-only” solutions, this degeneracy led to extremely large
errors in πE,N in Fig. 5, which are then reflected in similarly large
errors in the “light-curve-only” contours for host mass and lens-
source relative parallax in Fig. 6. Nevertheless, these large er-
rors gradually shrink when the priors are applied in Fig. 6, and
more so when the constraints from VLT observations are added
in Fig. 7.

We have emphasized that the high-πE (so low-DL, low-
M) solutions are very strongly, and improperly, favored by the
MCMC when it is cast in microlensing parameters, and that the
Galactic prior (Eq. (18)) properly compensates for this. But is
this really true? The best-fit distance for the Galactic-prior model
is four times larger than for the MCMC-only model, mean-
ing that the term D4

L/πrel favors the Galactic model by a factor
∼2500. Thus, even if the light curve strongly favored the nearby
model, the Galactic prior could “trump” the light curve and en-
force a larger distance. Indeed, this would be an issue if the
Galactic prior were operating by itself. In fact, however, Fig. 6
shows that the finally adopted solution (including the VLT flux
constraint) is disfavored by the light curve alone by just Δχ2 ∼ 3,
so, in the end there is no strong tension.

A second issue is that both parallax and orbital motion are
fairly subtle effects that could, in principle, be affected by sys-
tematics. If this were the case, the principal lensing parameters,
such as q and s, would remain secure, but most of the “higher or-
der” information, such as lens mass, distance, and orbital motion
would be compromised. It is always difficult to test for system-
atics, particularly in this case for which there are two effects that
are degenerate with each other and in combination are detected
at only Δχ2 < 100.

However, we can in fact test for such systematics using the
diagnostic

β ≡ v2⊥
v2esc,⊥

=
Ekin,⊥
Epot,⊥

, (31)

where v⊥ and vesc,⊥ are defined in Eqs. (12) and (13). Bound or-
bits require β < 1. Circular orbits, if seen face-on, have β = 0.5
and otherwise β < 0.5. Of course, it is possible to have β � 1,
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Fig. 8. Physical test of Bayesian results: phys-
icality diagnostic β = Ekin,⊥/Epot,⊥ is plotted
against host distance. Bound orbits must have
β < 1, and we expect a priori 0.1 < β < 0.5.

but it requires very special configurations to achieve this. For ex-
ample, if the planet is close to transiting its host, or if the orbit
is edge-on and the phase is near quadrature. Thus, a clear signa-
ture of systematics would be β > 1 for all light-curve solutions
with reasonable χ2. And if β <∼ 0.1, one should be concerned
about systematics, although this condition would certainly not
be proof of systematics. With these considerations in mind, we
plot DL vs. β in Fig. 8.

The key point is that the 1σ region of the Galactic-prior panel
straddles the region β <∼ 0.5 (logβ <∼ −0.7), which is characteris-
tic of approximately circular, approximately face-on orbits. It is
important to emphasize that no selection or weighting by orbital
characteristics has gone into construction of this panel. This is a
test which could easily have been failed if the orbital parameters
were seriously influenced by systematics: β could have taken lit-
erally on any value.

Finally, we turn to the two righthand panels, which incorpo-
rate the orbital constraints. Since these assume circular orbits,
they naturally eliminate all solutions with β > 0.5, and some
smaller-β solutions as well, because when ds/dt � 0, it is im-
possible to accommodate a β = 0.5 circular orbit. While this
radical censoring of the high-β solutions is the most dramatic
aspect of these plots, there is also the very interesting effect that
low-β solutions are also suppressed (though more gently). This
is because, as mentioned above, these require special configu-
rations and so are disfavored by the Kepler Jacobian, Eq. (25).
Of course, radical censorship of β > 1 solutions is entirely ap-
propriate (provided that β < 1 solutions exist at reasonable χ2),
but what about 0.5 <∼ β < 1? A more sophisticated approach
would permit non-circular orbits and then suppress these solu-
tions “more gently” using a Jacobian (as is already being for
done low-β solutions). However, as we have emphasized, the

limited sensitivity of this event to additional orbital parameters
does not warrant such an approach. Hence, radical truncation is
a reasonable proxy in the present case for the “gentler” and more
sophisticated approach.

Moreover, one can see by comparing Rows 2 and 3 of Table 3
that the addition of Kepler priors does not markedly alter the
Galactic-prior solutions.

6. Conclusions

We report the discovery of the planetary event MOA-2009-BLG-
387Lb. The planet/star mass ratio is very well-determined, q =
0.0132± 0.0003. We constrain the host mass to lie in the interval.
0.07 < Mhost/M� < 0.49 at 90% confidence, which corresponds
to the full range of M dwarfs. The planet mass therefore lies
in the range 1.0 < mp/MJup < 6.7, with its uncertainty almost
entirely due to the uncertainty in the host mass. The host mass
is determined from two “higher-order” microlensing parameters,
θE and πE, (i.e., M = θE/κπE).

The first of these, the angular Einstein radius is actually quite
well measured, θE = 0.31± 0.03 mas, from four separate caustic-
crossings by the source during the event. On the other hand, from
the light-curve analysis alone, the microlensing parallax vector
πE is poorly constrained because one of its components is de-
generate with a parameter describing orbital motion of the lens.
That is, effects of the orbital motion of our planet (Earth) and
the lens planet have a similar impact on the light curve and are
difficult to disentangle.

Nevertheless, the closest-lens (and so also lowest-lens-mass)
solutions permitted by the light curve are strongly disfavored
by the Galactic model simply because there are relatively few
extreme-foreground lenses that can reproduce the observed
light-curve parameters. Of course, we cannot absolutely rule out
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the possibility that we are victims of chance, so in principle it is
possible that the host is an extremely low-mass brown dwarf, or
even a planet, with a lunar companion.

On the other hand, the arguments against a higher mass lens
rest on directly observed features of the light curve. That is, as
mentioned above, θE is measured accurately from the four ob-
served caustic crossings. And one component of πE, the one in
the projected direction of the Sun, is also reasonably well mea-
sured from the observed asymmetry in the light curve outside the
caustic region. This places a lower limit on πE, hence an upper
limit on the mass.

However, for the latter parameter, the very strong prior from
the Galactic model favoring more distant lenses would, by it-
self, “overpower” the lightcurve and impose solutions with M >
1 M�, which are disfavored by the lightcurve at >3σ. It is only
because these high-mass solutions are ruled out by flux limits
from VLT imaging that the lightcurve-only χ2 is quite compati-
ble with the final, posterior-probability solution.

The relatively high planet/star mass ratio (implying a Jupiter-
mass planet for the case of a very late M-dwarf host) is then dif-
ficult to explain within the context of the standard core-accretion
paradigm.

The 12-day duration of the planetary perturbation, one of the
longest seen for a planetary microlensing event, enabled us to
detect two components of the orbital motion, basically the pro-
jected velocity in the plane of the sky perpendicular and parallel
to the star-planet separation vector. While the first of these is
strongly degenerate with the microlens parallax (as mentioned
above), the second one (which induces a changing shape of the
caustic) is reasonably well constrained by the two sets of well-
separated double caustic crossings. Moreover, once the Galactic-
model prior constrained the microlensing parallax, its correlated
orbital parameter was implicitly constrained as well. With two
orbital parameters, plus two position parameters from the basic
microlensing fit (projected separation s, and orientation of the
binary axis relative to the source motion α) plus the lens mass,
there is enough information to specify an orbit, if the orbit is as-
sumed circular. We are thus able to estimate a semi-major axis
a = 1.8 AU and period 5.4 years.

We recognized that inferences derived from such subtle light
curve effects could in principle be compromised by systematics.
We therefore tested whether the derived ratio of orbital kinetic to
potential energy was in the expected range, before imposing any
orbital constraints. If the measurements were strongly influenced
by systematic errors, this ratio could have taken on any value. In
fact, it fell right in the expected range.
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