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ABSTRACT
We construct a new sample of ∼1700 solar neighbourhood halo subdwarfs from the Sloan
Digital Sky Survey (SDSS), selected using a reduced proper-motion diagram. Radial velocities
come from the SDSS spectra and proper motions from the light-motion curve catalogue of
Bramich et al. Using a photometric parallax relation to estimate distances gives us the full
phase-space coordinates. Typical velocity errors are in the range 30–50 km s−1. This halo
sample is one of the largest constructed to date and the disc contamination is at a level of
�1 per cent. This enables us to calculate the halo velocity dispersion to excellent accuracy.
We find that the velocity dispersion tensor is aligned in spherical polar coordinates and that
(σ r, σφ , σ θ ) = (143 ± 2, 82 ± 2, 77 ± 2) km s−1. The stellar halo exhibits no net rotation,
although the distribution of vφ shows tentative evidence for asymmetry. The kinematics are
consistent with a mildly flattened stellar density falling with distance like r−3.75.

Using the full phase-space coordinates, we look for signs of kinematic substructure in the
stellar halo. We find evidence for four discrete overdensities localized in angular momentum
and suggest that they may be possible accretion remnants. The most prominent is the solar
neighbourhood stream previously identified by Helmi et al., but the remaining three are new.
One of these overdensities is potentially associated with a group of four globular clusters
(NGC 5466, NGC 6934, M2 and M13) and raises the possibility that these could have been
accreted as part of a much larger progenitor.

Key words: stars: Population II – subdwarfs – Galaxy: halo – Galaxy: kinematics and
dynamics – solar neighbourhood.

1 IN T RO D U C T I O N

In recent years, there has been an impressive and growing body
of evidence that the stellar halo of the Galaxy is composed of the
remnants of accretion and merging events. The Sloan Digital Sky
Survey (SDSS; York et al. 2000) has made a significant contri-
bution to this field, with a series of major discoveries, including
the Monoceros Ring (Newberg et al. 2002; Yanny et al. 2003), the
Virgo Overdensity (Jurić et al. 2008) and the Hercules–Aquila cloud
(Belokurov et al. 2007). These structures were identified as over-
densities of resolved stars, exploiting the deep and homogeneous

�E-mail: msmith@ast.cam.ac.uk (MCS); nwe@ast.cam.ac.uk (NWE)

photometry in five bands (u, g, r , i and z) that the SDSS provides
in a large area around the North Galactic Cap.

The aim of this paper is to search for substructure in the Galactic
halo with SDSS data, but this time using kinematic methods. This
technique led to the discovery of the disrupting Sagittarius dwarf
galaxy and its stream, which were found serendipitously in a radial
velocity survey of the outer Galactic bulge (Ibata, Gilmore & Irwin
1994, 1995). It has also led to the identification of a number of
probable halo streams found by spectroscopic surveys of the blue
horizontal branch population (e.g. Arnold & Gilmore 1992; Clewley
et al. 2005). More rarely, searches for kinematic substructure have
exploited both proper motion and radial velocities. For example,
high-quality proper motions provided by Hipparcos, together with
ground-based radial velocities, enabled Helmi et al. (1999, hereafter
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H99) to construct three-dimensional velocity distributions for an
almost complete sample of nearby halo stars and to identify a nearby
stream as a coherent structure in velocity space.

Samples of accurate proper motions can be obtained through
repeated astrometric observations over a significant temporal base-
line. Most of the SDSS data have limited variability information,
with one important exception: during the three months when the
Southern Galactic Cap is available for observation, the SDSS re-
peatedly scanned an ∼290 deg2 area – known as Stripe 82 – to
detect supernovae (see e.g. Abazajian et al. 2009).

Bramich et al. (2008) have presented a Stripe 82 catalogue of
almost 4 million ‘light-motion curves’, in which objects are matched
between the ∼30 epochs, taking into account the effects of any
proper motion over the 8-year baseline. The catalogue is complete
down to a magnitude 21.5 in u, g, r and i, and to magnitude 20.5
in z. Each object has its proper motion calculated based only on
the multi-epoch SDSS J2000 astrometric measurements. It reaches
almost 2 mag fainter than the SDSS/USNO-B catalogue (Monet
et al. 2003; Munn et al. 2004), making it the deepest large-area
photometric and astrometric catalogue available.

Substructure in the catalogue of Bramich et al. (2008) has already
been identified by looking for overdensities. For example, Watkins
et al. (2009) isolated the RR Lyrae variables by a combination of
colour, metallicity and period cuts. The Hercules–Aquila cloud and
the Sagittarius stream were both clearly identifiable in the Stripe
82 RR Lyrae population, together with a completely new and dis-
tant substructure called the Pisces Overdensity. Thus far, however,
searches for kinematic substructure in the Stripe 82 data have not
been carried out, and the object of this paper is to remedy this
deficiency.

In Section 2, we show how to isolate a sample of nearby halo sub-
dwarfs from the catalogue of Bramich et al. (2008). The kinematic
properties of the local halo subdwarf population are discussed in
Section 3. We develop algorithms to search for kinematic substruc-
ture, recovering the known H99 stream in Section 4, as well as new
kinematic overdensities in Section 5.

2 THE SUBDWARF SAMPLE

2.1 Reduced proper motion (RPM) diagram

The full Bramich et al. (2008) catalogue contains proper motions,
μ, for ∼1 million stars down to magnitudes of r ∼ 21.5. We trim
this sample by enforcing the following three conditions to retain
only those objects with high-quality data. First, we insist that the
mean object type ≥5.7. This requires an object to be classified as
a star in ≥90 per cent of epochs. This is less than 100 per cent
in order to retain objects that have been misclassified in a limited
number of epochs due to problems with the SDSS star–galaxy sepa-
ration algorithm. In the Bramich et al. (2008) catalogue, this occurs
particularly in the final season, when observations were not exclu-
sively taken in photometric conditions. Secondly, we insist that the
proper-motion error is less than 4 mas yr−1 to remove stars with
poorly determined proper motions. All of our final sample have
proper motions based on at least 23 epochs and time-baselines of
over 4 years, which indicates that the formal proper-motion errors
should be reliable. Thirdly, we impose r < 19.5 to reduce contami-
nants (see Appendix A for more details). Here, and elsewhere in this
paper, all magnitudes are corrected for extinction using the maps of
Schlegel, Finkbeiner & Davis (1998). The magnitude cut is often
redundant as we also later require stars to have SDSS spectra, and
there are very few spectra for stars fainter than this limit.

Figure 1. The RPM diagram for the Bramich et al. (2008) sample. The
solid lines denote the approximate boundary of the subdwarf population.
The dashed lines denote the stricter boundary employed to reduce contami-
nation from disc main-sequence dwarfs (which lie to the upper right of the
boundary) or white dwarfs (which lie to the lower left). To aid clarity in this
figure, we have imposed an additional proper-motion cut (μ > 30 mas yr−1);
however, no such cut was applied to our sample. Note that the colour-scale
saturates at 20 per cent of the peak density.

We select our candidate subdwarfs from an RPM diagram. The
r-band RPM is given by

Hr = r + 5 log
μ

mas yr−1
− 10, (1)

where μ is the proper motion and r is the apparent magnitude. This
uses a star’s proper motion as a proxy for distance, allowing us
to separate cleanly populations with different absolute magnitudes
(e.g. main-sequence dwarfs, white dwarfs, giants). Although disc
and halo dwarfs have similar absolute magnitudes, they have very
different kinematics. As a consequence, the faster moving halo stars
appear offset from the dominant disc stars in the RPM diagram,
which can be seen clearly in our data (Fig. 1).

Note that for the purposes of this figure, we have enforced an
additional cut that μ > 30 mas yr−1 to emphasize the distinction
between disc and halo dwarfs. As we relax this criterion, the diagram
becomes populated by slower moving halo dwarfs which lie in
the boundary region between the two populations on this RPM
diagram. Slower moving disc dwarfs, on the other hand, lie in the
upper portion of the diagram well away from our cuts and hence
do not contaminate our final sample. Therefore, although placing
such a cut on the magnitude of μ aids the clarity of this figure, it is
not necessary for our final sample. By not placing a cut on μ, we
make the process of quantifying the kinematic bias much easier (as
described later in Section 2.4).

We now define our halo subdwarf region as

H < 2.85(g − i) + 11.8 for (g − i) ≤ 2

H < 5.63(g − i) + 6.24 for (g − i) > 2

H > 2.85(g − i) + 15.0 for (g − i) ≤ 1.3

H > 5.63(g − i) + 11.386 for (g − i) > 1.3. (2)
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To construct as clean a sample as possible, we reject all objects that
lie within �H = 0.5 of the boundary, resulting in the final region
shown by the dashed line in Fig. 1.

2.2 SDSS spectra

As well as its photometric survey, the seventh SDSS Data Release
(DR7; Abazajian et al. 2009) also has a large number of spectra.
These are predominantly of galaxies and quasars, but also include
stellar targets (Yanny et al. 2009). These have been analysed by
a pipeline designed to derive the radial velocities and fundamen-
tal stellar atmospheric parameters [the SEGUE Spectral Parameter
Pipeline (SSPP); Allende Prieto et al. 2008; Lee et al. 2008a,b].
Typical internal errors reported by the pipeline are δvr ∼ 3.8 km s−1

for the radial velocity and δ[Fe/H] ∼ 0.1 dex for the metallicity.
Validation of this pipeline was carried out through comparison with
high-resolution spectra (Allende Prieto et al. 2008), which showed
that the SSPP external errors are approximately 2.4 km s−1 in ve-
locity and 0.11 dex in metallicity. To account for this, we add these
errors in quadrature to the internal errors from the SSPP.

We have cross-matched our candidate subdwarf sample with the
SSPP DR7 catalogue, and found that ∼7 per cent have suitable
spectra – defined as those with SSPP flag set to ‘nnnn’, which
indicates that there are no cautionary signs and the stellar parameters
should be well determined (Lee et al. 2008a). Additionally, we reject
all spectra with radial velocity error greater than 50 km s−1. If there
are multiple spectra, we take the spectrum with greatest signal-to-
noise ratio. The median errors in our cross-matched sample are
δvr = 4.1 km s−1 and δ[Fe/H] = 0.12 dex.

The SDSS spectroscopic target selection function is very het-
erogeneous, covering a wide variety of targets (Abazajian et al.
2009; Yanny et al. 2009). This will introduce selection effects into
our sample, for example much of the stellar targeting is biased to-
wards bluer populations which are likely to have lower metallicities.
However, we do not believe that this will introduce any significant
kinematic bias. If there was a strong correlation between the kine-
matics and metallicity within the halo subdwarf population, then
our results would be kinematically biased. However, as we will see
later in Section 3, we do not find any such strong correlation in our
sample.

2.3 Distances, metallicities and surface gravities

To obtain distances for our subdwarfs, we use a photometric parallax
relation. Such a relation has been established for main-sequence
stars in the SDSS photometric system by Ivezić et al. (2008). It
was constructed through observations of 11 globular clusters and
tested using additional clusters and stars with trigonometric parallax
distances.

The relation, which is given in equations (A1–A5) of Ivezić et al.
(2008), is valid for dwarfs with 0.2 < g − i < 4 and incorporates
a correction to account for systematic trends with metallicity. Ac-
cording to Ivezić et al. (2008), the intrinsic scatter in this relation is
∼0.13 mag, which is a lower limit on the true uncertainty. An upper
limit of 0.3 has been estimated by Sesar, Ivezić & Jurić (2008, see
also Jurić et al. 2008), who use candidate binary stars to assess the
reliability of the photometric parallaxes. Therefore, for this work,
we take a fiducial uncertainty of 0.2 mag.

The relation we adopt differs from that of Ivezić et al. (2008)
in that we have chosen not to incorporate their turn-off correction
(given by equation A6 of their paper). Instead, we have constructed
our own correction using the stellar models of Dotter et al. (2008).

Table 1. The number of subdwarf candidates after the respective cuts.

Section Description of cut Number of objects

2.1 Initial sample with high-quality astrometry 370 000
2.1 Satisfy RPM cut 27 000
2.2 With high-quality spectra 2704
2.3 Colour within range of photometric parallax 2183
2.3 Distance < 5.0 kpc 1717

Our procedure, which is described in Appendix B, results in the
following correction for stars with 0.3 < g − i < 0.6,

�Mr = a0 x + a1 x y + a2 x3 + a3 x2 y + a4 x3 y, (3)

where x = (g − i) − 0.6, y = [Fe/H] and a0 = 2.87, a1 = 2.25, a2 =
−9.79, a3 = 2.07, a4 = 0.31. Due to the scatter in this relation, we
increase the uncertainties in the distances of the stars in this colour
range (see Appendix B).

Using the accurate photometry from the multi-epoch Stripe 82
data [with mean δ(g − i) < 0.01] and taking [Fe/H] from the
spectra, we now estimate a distance. Combining the uncertainty in
the Ivezić et al. (2008) relation with the error on [Fe/H], we find
that the median distance error in our sample is ∼11 per cent. Our
distances are mostly in the range 0.5 to 5 kpc, although there are a
small number of stars further out. However, unless otherwise stated,
henceforth we only use stars with heliocentric distance D < 5 kpc.
Beyond this, the errors on the velocities become too large because
of the uncertainty in the proper motion. This gives us a final sample
of 1717 halo subdwarfs, as summarized in Table 1.

There are a number of potential sources of contamination in
the sample, including white dwarfs, thin- and thick-disc stars and
background giants. These are discussed in turn in Appendix A,
which concludes that the actual level of contamination is very small
(�1 per cent). As a check that our sample is clean, we examine
various non-kinematic properties in Fig. 2. We can immediately
see that the surface gravities are consistent with that of a dwarf
population. Although there are a handful of stars with low gravity,
the vast majority have log (g) > 3. These outliers are most likely
caused by misestimation of log (g) from the spectra. The median
error on log (g) for our sample is 0.25 dex, but the median error for
those stars with log (g) < 3 is 0.5 dex.

The distribution of [Fe/H] is also consistent with a halo sample.
In Fig. 2, we show the observed distribution along with the Gaus-
sian found by Ivezić et al. (2008) using photometric metallicities.
Although the mean of our distribution ([Fe/H] = −1.55) is sim-
ilar to theirs ([Fe/H] = −1.46), it is clear that our distribution is
significantly broader (with a dispersion 0.43 as opposed to 0.3).
These broadening and offset are most likely due to the underlying
selection function for the SEGUE spectra, which will clearly have
a significant effect on the [Fe/H] distribution.

2.4 Kinematic bias

One problem with our sample is that it suffers from kinematical
bias. This is caused by the cut on Hr, which selects stars via their
tangential velocity, rather than their proper motion. Using a cut on
Hr, instead of the proper motion, makes the task of quantifying the
bias significantly easier, since assumptions about the underlying
distance distribution (i.e. luminosity function) are not needed.

We calculate our detection efficiency as follows. For each sub-
dwarf in our final sample, we take the sky coordinates and create
a mock sample of 50 000 fake stars. Then, for each mock star, we
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Figure 2. Various properties of our subdwarf sample, namely metallic-
ity (top-left panel), surface gravity (top-right panel), heliocentric distance
(bottom-left panel) and spatial distribution in Galactocentric cylindrical co-
ordinates (bottom-right panel). Our [Fe/H] distribution may be subject
to biases due to the nature of the sample construction (see Section 2.3).
For comparison, the dashed curve shows the distribution from Ivezić et al.
(2008). The spatial distribution is inhomogeneous due to the fact that the
proper-motion accuracy, which depends on the number of epochs that a star
was observed, varies significantly across our field of view (see Bramich et al.
2008).

select Mr and g − i at random from our observed distribution.
Note that for each realization both the magnitude and colour are
assigned from one star. We then fix the kinematics by choosing
velocities from Gaussians with the halo velocity dispersions from
Kepley et al. (2007) and no net motion (following Allende Prieto
et al. 2006). We determine the tangential component of the velocity
(vtan) with respect to the line of sight between the Sun and the mock
star.1 Given this information, we can calculate the RPM using

Hr = Mr + 5 log10

(
vtan

4.74 km s−1

)
. (4)

The efficiency is then given by the fraction of mock stars which
pass our RPM cut.

3 G LOBA L K INEMATIC PROPERTIES

3.1 Data

Here, we calculate properties of the first and second moments of
the halo velocity distribution. We begin by defining our coordinate
systems. We take the solar radius as 8 kpc, the velocity of the lo-
cal standard of rest as 220 km s−1 and the solar peculiar velocity

1 To calculate vtan requires us to assign a distance to each mock star, which
we do at random from the observed distribution. This means that the effi-
ciency does have a dependence on the distance distribution; however, this
dependence is negligible since equation (4) is a function of the tangential
velocity rather than the proper motion.

Table 2. Efficiency-weighted mean velocities and their dispersions for our
halo sample in both spherical and cylindrical polar coordinates. The values
are obtained using a standard maximum-likelihood technique which incor-
porates the spread that results from observational errors (see equation 5).
The cross-terms or covariances are reported in a separate paper (Smith et al.
2009).

System Component 〈v〉 (km s−1) σv (km s−1)

Spherical vr 8.9+2.8
−2.6 142.7+2.0

−1.7

vφ 2.3+1.6
−1.8 82.4 ± 1.4

vθ 2.4+1.6
−1.4 77.3 ± 1.1

Cylindrical vR 8.9 ± 2.6 138.2+2.0
−1.7

vz −1.2 ± 1.6 89.3+1.3
−1.1

as given by Dehnen & Binney (1998). The Galactocentric Carte-
sian reference frame is denoted by (x, y, z), where the axes are
oriented along the line connecting the Sun and the Galactic Cen-
tre, in the direction of disc rotation and toward the North Galactic
Pole, respectively. This is a right-handed frame so that the Sun is
at x = −8.0 kpc. Velocity components resolved with respect to this
coordinate system are (vx, vy, vz).

We also use cylindrical and spherical polar coordinates defined
with respect to a right-handed Galactocentric frame. Cylindrical
polars are denoted by (R, φ, z), where R is radially outwards,
φ is positive in the direction of counter-rotation of the disc and
z is positive towards the North Galactic Pole. The corresponding
velocity components are (vR, vφ , vz). Similarly, spherical polars are
denoted (r , θ , φ), where r is radially outwards and θ is increasing
towards the South Galactic Pole. The velocity components are (vr,
vφ , vθ ). So, for stars in the solar neighbourhood, vθ ≈− vz. Note that
disc stars rotate with vφ ≈ −220 km s−1, which is a consequence of
adopting a right-handed system.

The values for the mean and dispersion of the velocity compo-
nents in spherical and cylindrical polars are given in Table 2. They
are calculated using a maximum-likelihood technique which cor-
rects for the spread that results from observational errors, namely,

L(μi, σvi
) =

N∏
k=1

⎧⎨
⎩ 1√

2π
(
σ 2

i + δv2
i,k

) exp

[
−(vi,k − μi)2

2
(
σ 2

i + δv2
i,k

)
]⎫⎬
⎭

(1/εk )

,

(5)

where μi and σ i are the mean and dispersion of velocity component
i, whilst vi,k and δ vi,k are the velocity and its uncertainty for the
kth star, εk is the detection efficiency for this star and N is the total
number of stars in the sample. The errors on the individual velocities
are calculated using Monte Carlo methods, incorporating the errors
on the proper motion, distance and radial velocity. The median error
in (vr, vφ , vθ ) is (38, 47, 35) km s−1. The magnitude of the errors
differs between the three components because of the location of our
field, which causes the proper motion to contribute more to the vφ

component. Furthermore, because the uncertainties are larger in the
tangential direction the errors are correlated, with the orientation of
the error ellipse varying along the field.

The maximum-likelihood velocity distributions are displayed in
Fig. 3. Although the Gaussian models provide a reasonable match to
the observations for vr and vθ , it appears that vφ exhibits some asym-
metry. Accordingly, we repeated the maximum-likelihood fitting
allowing for multiple Gaussian components. We determine whether
a multiple Gaussian model is statistically preferred by comparing
the ratio of likelihoods, where −2 ln (Li/Li+1) > 3 indicates that a
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Figure 3. The velocity distributions of the halo subdwarf sample. The velocity components are resolved in spherical polar coordinates with prograde rotation
corresponding to vφ < 0. The solid curves show Gaussian fits to the data, with the corresponding parameters given in Table 2.

model with (i + 1) components is preferred. The value of 3 comes
from the fact that there are three additional parameters in the model
with (i + 1) components.

Although for vr there is only a marginal improvement with mul-
tiple Gaussians, for vθ a two-component fit is clearly preferred,
reflecting the fact that the distribution is narrower than a single
Gaussian yet has notable wings for |vθ | � 200 km s−1. As a conse-
quence, this two-component model has one main narrow component
(with σ = 64 km s−1) and a shallow broad component (with σ =
135 km s−1), both of which have mean close to 0 km s−1. The pres-
ence of these wings can be understood when one considers the
substructures present in our sample (which will be discussed later).

For vφ , a two-component fit is also preferred, with approximately
equal contributions from the two components with dispersions of
48.1 and 98.9 km s−1 and means 22.8 and −17.1 km s−1, respec-
tively (see Fig. 4). This provides a better match to the asymmetry
in the vφ distribution. We believe that this asymmetry is not caused
by problems with our efficiency correction nor with contamination
from the disc (see Appendix A). This leads us to conclude that it
is a real effect. It appears that the asymmetry is more pronounced
for metal-rich stars ([Fe/H] > −1.5 dex), although we find no evi-
dence for dramatic trends with metallicity, such as those postulated
by Morrison et al. (2009). Neither do we see any clear gradient in
〈vφ〉 as a function of height from the Galactic plane. Although we

Figure 4. Multicomponent Gaussian fit to the vφ velocity distribution. The
statistically preferred fit is this two-component model, which is better able
to reproduce the asymmetry than the single Gaussian shown in Fig. 3.

identify various kinematic substructures in our sample (see Sec-
tions 4 and 5), none of these can explain this asymmetry.

In Table 3, we present earlier determinations of the mean veloc-
ity and dispersion for halo stars in the literature. Our dispersions
are significantly smaller than previous estimates (such as Gould &
Popowski 1998; Chiba & Beers 2000; Gould 2003a; Kepley et al.
2007), although the ratios are in approximate agreement. Compar-
ison between different investigations is clouded by the fact that
some of the earlier samples are subject to significant levels of disc
contamination. Also, it is not always clear whether corrections have
been made for the spread induced by measurement errors. The dis-
persions estimated by Gould (2003a) are upper limits as they do
not incorporate the spread due to uncertainties in their photometric
parallax relation.

There has also been controversy in the literature with regard to
the mean rotational velocity of the halo, with estimates of prograde
(Chiba & Beers 2000; Kepley et al. 2007), no rotation (Gould &
Popowski 1998; Allende Prieto et al. 2006) or retrograde (Majewski
1992). Our value of 〈vφ〉 = 2.3+1.6

−1.8 km s−1 is approximately consis-
tent with a non-rotating halo. Since our kinematic selection is biased
against stars with vφ ≈ − 200 km s−1, we might expect that our es-
timate of 〈vφ〉 is dependent on the efficiency correction. However,
tests show that this is not the case. Our calculation in Section 2.4
requires an assumption for the rotational velocity of the halo, but
if we adopt values anywhere between −20 and 20 km s−1, then our
measured value of 〈vφ〉 varies by less than 1 km s−1. However, it is
still true that our estimate of 〈vφ〉 (as with any of the estimates from
Table 3) is degenerate with the assumed value for the local standard
of rest (220 km s−1).

Another result of interest is the value of 〈vr〉, which is 3σ away
from zero. It is not clear why we obtain a positive value of 〈vr〉
(i.e. radially outwards). There are a variety of potential issues that
could cause this effect: kinematic substructure; systematic errors
in the velocities (either the radial velocities or proper motions) or
distances; the presence of binary stars, for which we would system-
atically underestimate their distances; bias in the determination of
the solar motion with respect to the local standard of rest. We do
not investigate this issue further in this paper.

We also calculate the efficiency-weighted correlation coefficients
and tilt angles, as defined in Smith, Evans & An (2009), for the 1568
stars with | z | > 1 kpc. Although the data used here are the same
as that of Smith et al. (2009), our sample differs in that we are now
incorporating our new turn-off correction to the parallax relation
(see equation 3 and Appendix B). The values are given in Table 4.
These are very similar to those quoted in Smith et al. (2009) and
their conclusions are not affected by this new parallax correction
term.
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Table 3. Some determinations of the halo velocity parameters from the literature. Note that vφ is
defined counter to the direction of disc rotation and for nearby samples vφ ≈ −vy. With the exception
of Kepley et al. (2007), the estimates for the bulk motion have been standardized using the value of
the solar motion from Dehnen & Binney (1998). Kepley et al. (2007) use the value from Mihalas &
Binney (1981) and as a consequence their estimate of 〈vφ〉 is subject to an offset of ∼7 km s−1.

Reference System Component 〈v〉 (km s−1) σ v (km s−1)

Woolley (1978) Spherical vr – 148
vφ – 122
vθ – 82

Norris (1986) Cartesian vx – 131 ± 6
vy – 106 ± 6
vz – 85 ± 4

Gould & Popowski (1998) Cartesian vx −5 ± 15 171 ± 11
(Kinematically selected sample) vy 9 ± 13 99 ± 8

vz 1 ± 8 90 ± 7

Gould & Popowski (1998) Cartesian vx −3 ± 9 160 ± 7
(Non-kinematically selected sample) vy 28 ± 9 109 ± 9

vz 2 ± 5 94 ± 5

Chiba & Beers (2000) Cartesian vx −16 ± 16 141 ± 11
vy 26 ± 12 106 ± 9
vz −5 ± 11 94 ± 8

Gould (2003a) Cartesian vx −1 ± 3 171 ± 10
vy 9 (fixed) 99 ± 8
vz 2 ± 3 90 ± 7

Kepley et al. (2007) Cylindrical vR −4 ± 11 157 ± 8
vφ −23 ± 8 110 ± 6
vz −1 ± 6 84 ± 4

Table 4. Efficiency-weighted correlation coefficients and tilt
angles for halo stars with | z | > 1 kpc (see Smith et al. 2009
for the definitions of these quantities). Note that these val-
ues are not identical to those quoted in Smith et al. (2009)
because the ones given here incorporate our new turn-off cor-
rection for the photometric parallax relation (see equation 3).
However, the difference is small and none of the conclusions
of Smith et al. (2009) is affected.

Component Corr[vi, vj] αi,j (◦)

[vr , vθ ] 0.052 ± 0.028 2.2 ± 1.2
[vr , vφ ] −0.019 ± 0.042 −1.6 ± 3.6
[vφ , vθ ] −0.073 ± 0.050 −36.7 ± 24.1

3.2 Modelling

Taking our cue from the recent arguments of Fellhauer et al. (2006),
let us assume that the gravitational potential of the dark halo is
spherically symmetric. If the halo has a flat rotation curve of am-
plitude v0 (=220 km s−1), then the potential is

ψ = −v2
0 log r. (6)

We now seek a phase-space distribution function for the stellar halo
that can reproduce the observed kinematics of the SDSS subdwarfs.
From the Jeans theorem (see e.g. Binney & Tremaine 1987), the
distribution function must depend on the integrals of motion, namely
the binding energy E, the components of angular momentum, Jx,
Jy, J z, together with the total angular momentum, J.

A number of authors (White 1985; de Zeeuw, Evans &
Schwarzschild 1996) have shown that the stellar density laws of

the form

ρ = ρ0r
−γ sin2n θ (7)

can be reproduced by distribution functions

fm,n

(
E, J 2, J 2

z

) = ηm,nJ
2mJ 2n

z exp[(γ + 2n + 2m)E], (8)

where m + n > −1 and 2n > −1, and ηm,n is a normalization
constant (given in equation 3.5 of de Zeeuw et al. 1996). Note that
we have written m and n so that our notation is consistent with
earlier work, but m and n are not necessarily integers.

The corresponding velocity second moments are

ρ
〈
v2

r

〉 = ρ0v
2
0

2m + 2n + γ

sin2n θ

rγ
,

ρ
〈
v2

θ

〉 = m + n + 1

n + 1
ρ

〈
v2

r

〉
,

ρ
〈
v2

φ

〉 = (2n + 1)ρ
〈
v2

θ

〉
. (9)

So, for example, if m = n = 0, the model is isotropic and all
three velocity dispersions are just v0/

√
γ . This is a well-known

result for isothermal populations. More generally, for fixed γ and
n, the velocity dispersions and the density have the same angular
dependence for all m, but the anisotropy ratios 〈v2

θ 〉/〈v2
r 〉 and 〈v2

φ〉/
〈v2

r 〉 do depend on m.
A flexible way to model the stellar halo is to build further distribu-

tion functions by linear superposition. Here, our aim is to construct
a simple distribution function that reproduces the kinematics of the
SDSS subdwarfs, and so we choose

f
(
E, J 2, J 2

z

) = αm,0fm,0 + αm,1fm,1, (10)

where αm,n are the constants specifying the fraction contributed by
each component. The corresponding density law is flattened and
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has the form

ρ(r, θ ) = ρ0r
−γ + ρ1r

−γ sin2 θ. (11)

We require that at R = 8.70 kpc and z = −2.41 kpc (the centroid
of our SDSS subdwarf population)〈
v2

r

〉1/2 =143 km s−1,
〈
v2

θ

〉1/2 =77 km s−1,
〈
v2

φ

〉1/2 =82 km s−1.

(12)

The advantage of a two-component model (10) is that there is a
unique solution. There are three velocity dispersion constraints, and
there are three unknowns, namely the radial fall-off γ , the index m
and the ratio ρ1/ρ0 (or equivalently αm,1/αm,0). Solving the non-
linear simultaneous equations numerically gives the solution γ =
3.75, m = −0.72 and ρ1/ρ0 = 0.063.

In other words, the SDSS subdwarf kinematics are consistent
with a stellar halo in which the density falls off like r−3.75, somewhat
steeper than the r−3.5 advocated in the classical work on the metal-
poor populations of the halo (e.g. Freeman 1987). The axis ratio of
the stellar distribution can be computed from

q =
[

1 + ρ1

ρ0

]−1/γ

(13)

which gives q = 0.983, in other words, very round. This distribution
function is not unique, as there are undoubtedly more complicated
multicomponent models. None the less, it is the simplest distribution
function that is consistent with the kinematical data. It is interest-
ing that the triaxial kinematics are consistent with a near-spherical
stellar density law.

4 K INEMATIC SUBSTRUCTURE

4.1 Quantification of substructure

The components of the angular momentum perpendicular and par-
allel to the symmetry axis of the Galactic plane are

J⊥ = [
(yvz − zvy)2 + (zvx − xvz)

2
] 1

2 , Jz = xvy − yvx. (14)

For a solar neighbourhood sample, these two angular momentum
components are essentially J z ∼ −r�vy and J ⊥ ∼ r�|vz|. Our
median errors on (J z, J ⊥) are (410, 255) km2 s−1. If we restrict our
sample to the 645 subdwarfs within 2.5 kpc, then the errors are re-
duced by a factor of ∼35 per cent. Use of these coordinates is a com-
mon approach (e.g. H99, Chiba & Beers 2000), as they are adiabatic
invariants in a spherical potential. Note that, unlike H99, we use a
right-handed coordinate system, so our values of J z take an oppo-
site sign to theirs. This means that in our coordinate system the Sun
would lie at approximately (−1800, 0) kpc km s−1. We weight each
star according to the inverse of its detection efficiency to account for
kinematic bias and smooth the distribution using a Gaussian kernel
with full width at half-maximum of (300, 150) kpc km s−1, which is
the same order of magnitude as the errors. The resulting distribution
is plotted in Fig. 5.

To test for substructure, we generate an artificial sample of halo
stars using the observed distances and directions of stars in our sam-
ple, but generate velocities according to the trivariate Gaussian with
means and dispersions given in Table 2. We smooth this distribution
and subtract it from the smoothed observed distribution (see Fig. 5).
The resulting residual plot is shown in Fig. 6, where the colour-scale
shows the significance of overdensities. The significance is quanti-
fied by generating a series of efficiency-corrected realizations from
our distributions, all of which have the same number of stars as

Figure 5. The distribution of angular momentum for our subdwarfs (left-
hand panels) and for an artificial smooth halo (right-hand panels). These
plots cover the distance range 0–2.5 kpc (top panels) and 2.5–5 kpc (bottom
panels). The contours denote our detection efficiency in steps of 10 per cent,
where the solid line corresponds to the 90 per cent contour. The box corre-
sponds to the location of the kinematic stream identified by H99. In this co-
ordinate system, the Sun would lie at approximately (−1800, 0) kpc km s−1.

Figure 6. The distribution of angular momentum residuals for subdwarfs in
the distance range 0–2.5 kpc (top panel) and 2.5–5 kpc (bottom panel). The
residuals are obtained after subtracting a smooth model from the observed
distribution. The contours and H99 boxes are as in Fig. 5. In this coordinate
system, the Sun would lie at approximately (−1800, 0) kpc km s−1.

the observed sample. The scatter in these realizations provides an
estimate of σ (J z, J ⊥), from which we can deduce the significance
of our overdensities. We show the overdensities for two distance
ranges (the 645 stars with D < 2.5 kpc and the 1072 with 2.5 <

D < 5 kpc) and include contours showing the detection efficiency.
Some of the apparent overdensities in the outer regions are arte-

facts. The smooth model predicts very few stars in the outer regions
and hence σ (J z, J ⊥) is close to zero, which exaggerates the signif-
icance of individual outliers. For example, the large clump around
(J z, J ⊥) = (2000, 2500) kpc km s−1 in the upper panel of Fig. 6 is
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Figure 7. The distribution of the angular momentum components of our
subdwarfs in the distance range 0–2.5 kpc (top panel) and 2.5–5 kpc (bot-
tom panel). Stars are colour-coded according to [Fe/H] and the colour
range saturates at −2.5 and −0.5. Contours denote the residuals shown
in Fig. 6, corresponding to 1σ , 3σ , 5σ and 10σ significance. There are a
number of stars which lie outside the range of this plot; these are given
in Table 5. In this coordinate system, the Sun would lie at approximately
(−1800, 0) kpc km s−1.

actually composed of only one star. This can be seen on comparison
with Fig. 7, which shows the unbinned (J z, J ⊥) distribution for
each of the stars. Note that the figures confirm that our sample is
free from significant disc contamination. If there were significant
thin- or thick-disc stars, they would be visible in the region around
−2500 < J z < −1500 kpc km s−1 and J ⊥ < 600 kpc km s−1.

4.2 The H99 kinematic stream

The most notable feature in Fig. 7 for stars within 2.5 kpc is the
asymmetry in J z for stars with 1500 < J ⊥ < 2500 kpc km s−1.
There is a significant number of stars located around (J z, J ⊥) ≈
(−1000, 2000) kpc km s−1. This corresponds to the solar neigh-
bourhood kinematic stream first identified by H99. They anal-
ysed a sample of nearby (i.e. <1 kpc) halo stars with full six-
dimensional phase-space information and found that ∼10 per cent
come from a single coherent structure. Subsequently, Kepley et al.
(2007, hereafter K07) probed a larger volume (D < 2.5 kpc) and
found a smaller fraction (∼5 per cent) of stars belonging to this
stream. Restricting their sample to 1 kpc, they find a larger fraction
(∼9 per cent) in agreement with H99, although this is not surprising
since there is a significant overlap between the H99 and K07 sam-
ples. Chiba & Beers (2000) also studied an extended version of the
H99 halo sample and found a smaller fraction than H99, although
the exact percentage is unclear. K07 defined the location of the H99
region as −1500 < J z < −500 and 1400 < J ⊥ < 2500, which is
indicated in Figs 5–7.

There has also been related work on streams in the solar neigh-
bourhood subdwarfs by Gould (2003b). This analysis, which was
based on a large sample of objects with proper-motion measure-

ments but without radial velocities or distance determinations, used
a Bayesian likelihood analysis to investigate various properties
of the nearby subdwarf population. Instead of looking for direct
evidence of cold kinematic streams, he quantified the amount of
granularity in the velocity space and concluded that no more than
5 per cent of local halo stars (within ∼300 pc) can come from a
single cold stream. Although this number appears to be in conflict
with the original results from H99, there is actually no discrepancy
as the H99 stream is formed from two separate clumps in velocity
space.

The H99 stream is clearly visible in our data, as can be seen
in the top panel of Fig. 6, although it appears more diffuse than
the detection in K07 (cf. their fig. 11). Note that this difference
cannot be explained by the size of our observational errors, since
the median error on (J z, J ⊥) for our H99 stars is (240, 209) km2 s−1.
Closer inspection of the upper panel of Fig. 7 shows that the H99
box contains two stars near the centre along with a more diffuse
component of 10 stars. These two stars lie almost exactly in the
centre of the box at (J z, J ⊥) ≈ (−1035, 1954) kpc km s−1. The
mean metallicity of the two stars is −2.2 dex, which is more metal-
poor than our full subdwarf population (−1.5 dex). However, the
mean metallicity of all 12 stars in the H99 region is −1.8 dex
with a dispersion of 0.4 dex, which is comparable to the overall
distribution.

The stars in and around the H99 region are illustrated in Fig. 8,
which shows their velocities and offset in the (J z, J ⊥) plane from the
centre of the H99 box (the mean error in Joffset is 196 kpc km s−1).
Given that a smooth halo distribution should give approximately
four stars in this region, we suspect that not all of these 12 stars are
associated with the H99 feature. The distance distribution of these
stars is approximately uniform between ∼1 and ∼2.5 kpc, with no
obvious trend towards smaller distances (unlike K07, who found
that 67 per cent of their H99 stars were within 1 kpc). However,
we note that our sample is biased against D � 1 kpc, as can be
seen from Fig. 2, which implies that we could be missing stars from

Figure 8. Properties of our H99 stars (see Section 4.2). Upper and lower-
left panels show the velocity distributions for all stars within 2.5 kpc (small
dots) and stars in the H99 region (large circles). The bottom-right panel
shows [Fe/H] as a function of offset from the centre of the H99 box in the
two-dimensional (J z, J⊥) plane, which lies at (−1000, 1950) kpc km s−1.
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this feature. If we consider the more distant stars with D > 2.5 kpc
as shown in the lower panel of Fig. 7, we find further potential
members of the H99 region. However, these stars appear to come
from a more homogeneous background of stars with high angular
momentum.

We wish to quantify the prevalence of the H99 stream. We first
need to correct for the detection efficiency in order to account for the
kinematic bias in our sample. However, the efficiency in Section 2.4
is not directly applicable for stars in the H99 stream, as they do not
have the same velocity distribution as the underlying smooth halo.
To account for this, we recalculate the efficiency for stars with H99
kinematics. Using this efficiency we predict that up to ∼7 per cent
of all halo stars within 2.5 kpc lie in the H99 box, which is signifi-
cantly larger than the fraction expected from an entirely smooth halo
(∼1 per cent).

4.3 Retrograde and prograde outliers

Various authors have noted the presence of prograde or retrograde
outliers when analysing distributions of halo velocities. For exam-
ple, Venn et al. (2004) identified halo stars on extreme retrograde
orbits (vφ > 200 km s−1) and found them to be significantly more
metal-poor than typical halo stars. K07 similarly saw an excess
of retrograde stars in their halo sample and noted a deficiency in
[Fe/H] (they found six stars with 〈[Fe/H]〉 = −2.1 dex). K07 ar-
gued that these stars probably belong to a tidally disrupted stream.
In addition, K07 found three metal-poor stars on extreme prograde
orbits, although they postulated that these were more consistent
with the underlying halo distribution.

In our sample, we find many stars on extreme orbits, as can be
seen from Fig. 7. There are also a number of stars whose angular
momenta are sufficiently large for them to lie outside the region of
this plot; those stars are listed in Table 5.

However, none of the low-J ⊥ outliers in Fig. 7 looks particu-
larly clumped and neither the prograde nor retrograde outliers are
significantly in excess of expectations of a smooth distribution. If
we analyse stars with J ⊥ < 2000, then we find five stars with
J z < −2000 kpc km s−1 and 31 stars with J z > 2000 kpc km s−1.
Our smooth model predicts 2.4 and 30.3 stars in these regions,
respectively. Furthermore, neither of these two samples is particu-
larly metal-poor; the mean metallicity is −1.6 and −1.4 dex for the
prograde and retrograde outliers, respectively. Note that the strong
asymmetry in the number of outliers is due to the fact that our
detection efficiency is significantly lower for J z < 0.

5 N EW KI NEMATI C OV ERDENSI TI ES

There are a number of other possible clumps in our sample. We dis-
cuss three of them, which we label Sloan Kinematic Overdensities
(SKOs), in the following section. The associated stars are given in
Table 6.

5.1 SKOa

One interesting feature in the nearby sample shown in the upper
panel of Fig. 7 is the collection of three retrograde stars centred
on (J z, J ⊥) ≈ (410, 2420) kpc km s−1. The three stars are all more
metal-poor than the halo average, with 〈[Fe/H]〉 of −2.1 dex, and
are not clumped spatially (see Table 6). The stars are enclosed by
a circular region of the (J z, J ⊥) plane centred on (414.8, 2420.3)
with radius 350 kpc km s−1. Our smooth model predicts that there
should be only 0.1 per cent of the sample in this region, which is
significantly smaller than the observed fraction of 0.5 per cent. We
shall refer to this potential overdensity as SKOa.

When constructing our subdwarf sample, we enforced a strict cut
on the quality flags that are raised by the SSPP (see Section 2.2).
The SSPP includes two categories of flags: critical and cautionary.
For the latter category, it is often possible to determine the stellar
parameters, although they should be treated with caution. The vast
majority of these stars are flagged because the SSPP pipeline raised
issues regarding the Hα line strength (Lee et al. 2008a). In particular,
this flag marks stars where ‘there exists a strong mismatch between
the strength of the predicted Hα line index, based on the measured
Hδ line index’. If we include stars with cautionary flags into our
subdwarf sample, then we gain an additional ∼700 stars, of which
three appear to be associated with the SKOa feature. All of these
stars are have similar metallicities to the SKOa members mentioned
above (see Table 6).

We plot the velocities of the six SKOa stars in Fig. 9, along with
the distribution of [Fe/H] as a function of heliocentric distance.
Also included in this figure are the stars in a looser selection region
with radius 500 kpc km s−1 and with distances up to 5 kpc. It seems
that a number of the more distant stars may also be associated with
this overdensity.

Although the above discussion of SKOa appears tentative, there
is striking evidence supporting an accretion scenario for these stars.
In Fig. 10, we overplot the locations of globular clusters using data
from Dinescu, Girard & van Altena (1999) on our distribution of
kinematic overdensities in the (J z, J ⊥) plane. We immediately

Table 5. Retrograde and prograde outliers.

SDSS ID J z J⊥ vr vφ vθ Distance [Fe/H]
(kpc km s−1) (kpc km s−1) (km s−1) (km s−1) (km s−1) (kpc) (dex)

SDSS J002012.32+003954.3 3368.9 ± 909.9 1597.8 ± 560.9 365.8 ± 64.7 377.0 ± 98.0 21.0 ± 55.1 4.80 ± 0.52 −1.15 ± 0.12
SDSS J003434.00−011244.6 −3779.3 ± 516.5 1855.1 ± 365.3 −82.2 ± 50.1 −433.8 ± 57.7 −139.6 ± 37.8 3.43 ± 0.33 −1.88 ± 0.13
SDSS J003948.05+003701.5 −135.4 ± 541.0 3119.4 ± 449.6 21.4 ± 53.3 −15.3 ± 61.1 −333.8 ± 46.4 3.43 ± 0.32 −2.56 ± 0.15
SDSS J010450.81−011244.8 −1162.1 ± 270.3 3568.3 ± 303.5 −151.1 ± 33.5 −136.3 ± 32.2 410.8 ± 31.3 1.76 ± 0.20 −1.38 ± 0.11
SDSS J010643.56+005744.2 443.5 ± 801.9 3221.2 ± 812.0 164.0 ± 63.4 45.6 ± 82.0 −301.4 ± 70.9 4.99 ± 0.57 −0.78 ± 0.17
SDSS J010747.56−010447.0 −3240.1 ± 557.3 2043.0 ± 396.2 −124.9 ± 51.3 −356.5 ± 59.6 −180.1 ± 42.7 3.42 ± 0.32 −2.18 ± 0.14
SDSS J013935.21−002545.9 −773.7 ± 420.3 3233.2 ± 428.1 94.3 ± 35.4 −82.2 ± 44.9 −327.5 ± 37.7 3.32 ± 0.38 −1.44 ± 0.11
SDSS J015712.77+011137.1 −929.6 ± 273.1 3748.4 ± 375.6 −112.3 ± 28.1 −103.4 ± 31.0 409.3 ± 35.5 2.01 ± 0.22 −1.35 ± 0.12
SDSS J015755.12+000416.1 661.4 ± 566.9 4171.8 ± 515.7 −4.6 ± 39.2 68.9 ± 58.1 −416.5 ± 43.5 3.30 ± 0.41 −1.43 ± 0.12
SDSS J020359.08−005927.9 −742.4 ± 588.5 3857.5 ± 641.2 −51.4 ± 38.0 −73.1 ± 58.1 355.9 ± 52.6 4.35 ± 0.45 −1.74 ± 0.16
SDSS J021724.92+003127.3 −904.2 ± 541.7 5078.4 ± 704.6 56.8 ± 39.6 −89.4 ± 53.8 −478.2 ± 55.9 3.86 ± 0.42 −1.97 ± 0.12
SDSS J030816.92+011513.3 1956.8 ± 854.4 3322.5 ± 605.5 113.4 ± 29.8 187.7 ± 77.7 306.3 ± 49.8 3.53 ± 0.46 −1.45 ± 0.14
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Table 6. Stars which are candidate members of the three new kinematic overdensities (SKOa–c). Note that the errors on the velocities and angular momenta
can be highly correlated; they are included here to give an indication of the relative uncertainties.

SKO SDSS ID J z J⊥ vr vφ vθ Distance [Fe/H]
(kpc km s−1) (kpc km s−1) (km s−1) (km s−1) (km s−1) (kpc) (dex)

a SDSS J215939.43−004835.6 542.9 ± 347.4 2459.5 ± 262.2 142.4 ± 73.7 71.0 ± 48.6 320.4 ± 57.2 0.94 ± 0.09 −2.07 ± 0.13
a SDSS J004328.45−001700.0 507.9 ± 700.8 2191.7 ± 353.6 162.8 ± 46.4 60.8 ± 71.6 −258.5 ± 48.9 1.55 ± 0.16 −1.90 ± 0.12
a SDSS J014424.63+003442.0 193.6 ± 666.6 2609.8 ± 301.1 135.0 ± 26.8 21.7 ± 60.8 −286.9 ± 44.8 2.06 ± 0.19 −2.38 ± 0.13

a� SDSS J012713.03+011341.8 452.4 ± 850.1 2529.1 ± 375.0 46.8 ± 33.6 53.2 ± 74.3 294.7 ± 50.7 1.29 ± 0.13 −1.90 ± 0.25
a� SDSS J014332.60−010726.7 397.6 ± 711.3 2281.7 ± 344.3 −212.0 ± 25.6 44.9 ± 65.1 −252.4 ± 39.7 2.01 ± 0.19 −1.76 ± 0.13
a� SDSS J030435.92−002403.2 51.3 ± 770.0 2233.4 ± 631.6 −217.6 ± 35.4 5.9 ± 68.9 −255.1 ± 56.5 1.08 ± 0.10 −2.06 ± 0.11

b SDSS J031005.44−001459.4 671.6 ± 797.2 2704.8 ± 774.1 181.8 ± 33.4 61.3 ± 71.3 −236.3 ± 61.7 4.36 ± 0.52 −1.65 ± 0.12
b SDSS J031049.12+005059.3 997.5 ± 712.7 2490.8 ± 614.4 −25.3 ± 28.4 90.8 ± 62.9 −216.5 ± 49.7 4.33 ± 0.50 −1.30 ± 0.11
b SDSS J031123.47+001249.6 1305.7 ± 852.2 2698.5 ± 632.5 −189.8 ± 27.2 114.6 ± 71.5 −223.1 ± 49.2 4.95 ± 0.63 −1.57 ± 0.11
b† SDSS J030641.38−002338.0 1221.2 ± 1285.3 3248.5 ± 1198.1 −63.2 ± 42.8 99.9 ± 102.0 −245.5 ± 86.1 6.31 ± 0.85 −1.17 ± 0.11
b† SDSS J030948.29−000111.3 1371.6 ± 1650.7 2433.0 ± 1455.8 15.6 ± 49.7 102.7 ± 121.0 −162.2 ± 108.3 7.87 ± 0.95 −1.61 ± 0.12
b† SDSS J031120.73−000329.4 1655.1 ± 1097.4 2735.3 ± 1050.5 245.6 ± 37.1 141.2 ± 89.6 −216.2 ± 76.9 5.45 ± 0.70 −1.10 ± 0.16

c SDSS J015840.78−000115.6 1305.3 ± 690.3 2002.9 ± 461.6 −177.6 ± 38.9 130.4 ± 67.5 −183.8 ± 47.4 4.12 ± 0.40 −2.61 ± 0.17
c SDSS J015840.90+002900.8 1367.9 ± 864.8 2889.3 ± 729.4 87.6 ± 49.5 133.1 ± 82.3 −258.5 ± 62.3 4.60 ± 0.52 −2.61 ± 0.18
c‡ SDSS J015806.00+003419.5 1825.3 ± 1378.6 2688.8 ± 1247.4 228.8 ± 62.3 162.2 ± 119.1 −201.9 ± 97.3 6.55 ± 0.82 −2.51 ± 0.12

Note. �The Sloan Stellar Parameter Pipeline flagged the parameters for these stars as ‘cautionary’ due to issues regarding the Hα line strength. †The distances
for these stars are greater than 5 kpc, which means that the derived velocities are subject to large uncertainties. ‡The Sloan Stellar Parameter Pipeline flagged
the parameters for this star as ‘cautionary’ due to the presence of a strong G-band feature in the spectrum, and the distance is greater than 5 kpc and so the
velocities are uncertain.

Figure 9. Properties of the SKOa overdensity (see Section 5.1 and Table 6).
The upper two and lower-left panels show the velocity distributions for
all stars within 2.5 kpc of the Sun (small points), members of the
SKOa overdensity (large circles), additional members with cautionary
SSPP flags (triangles) and potential members with distance greater than
2.5 kpc (small circles). The members with D < 2.5 kpc are enclosed within
a 350 kpc km s−1 circle centred on (413.6, 2419.9) kpc km s−1, while the
potential members with 2.5 < D < 5 kpc are enclosed within a larger radius
(500 kpc km s−1). The bottom-right panel shows [Fe/H] as a function of
heliocentric distance for stars with offset in the two-dimensional (J z, J⊥)
plane less than 500 kpc km s−1 from the centre of the SKOa clump.

see the clump of four clusters standing out around SKOa. These
clusters are NGC 5466, NGC 6934, NGC 7089/M2 and NGC
6205/M13, which have metallicity −2.22, −1.54, −1.58 and −1.65
dex, respectively. Of these four clusters, NGC 5466 is known to
be disrupting (Odenkirchen & Grebel 2004; Belokurov et al. 2006)

Figure 10. Angular momentum distribution of the 38 globular clusters
from Dinescu et al. (1999) with six-dimensional phase space, where the
colour corresponds to cluster metallicity. Contours denote the kinematic
overdensities for halo stars within 2.5 kpc (see Section 4), corresponding to
1σ , 3σ , 5σ and 10σ significance. Note the four globular clusters potentially
associated to the overdensity at (J z, J⊥) ≈ (500, 2500) kpc km s−1; these are
NGC 5466, NGC 6934, NGC 7089/M2, NGC 6205/M13. In this coordinate
system, the Sun would lie at approximately (−1800, 0) kpc km s−1.

and its orbit takes it to within a few kpc of the solar neighbour-
hood (Fellhauer, private communication; see also Fellhauer et al.
2007). This, along with the fact that the SKOa stars have similarly
low metallicity, indicates that they could well be tidal debris from
NGC 5466. However, the fact that there are four clusters located in
the same region of the (J z, J ⊥) plane raises the intriguing possibility
that all could be associated to a single major accretion event. Previ-
ous authors have questioned whether subsets of these four clusters
may be associated (e.g. Dinescu, Girard & van Altena 1999; Palma,
Majewski & Johnston 2002; Mackey & Gilmore 2004), but it ap-
pears that no one to date has attempted to explicitly associate all four
clusters.

The uncertainties on the velocities of these clusters varies;
NGC 6205 and 7089 have reasonably well-constrained angular mo-
menta (with error on J z and J ⊥ of between 200 and 400 kpc km s−1),
while for NGC 5466 and 6934 this is less well constrained (with
error of between 400 and 900 kpc km s−1). This is due to the uncer-
tainties in the proper motion combined with the large distances to
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these two clusters (∼7 to ∼15 kpc). However, although the error for
NGC 5466 seems large, its proper motion is confirmed by Fellhauer
et al. (2007) and so its location in the (J z, J ⊥) plane is robust.

Note that a similar retrograde feature has been identified by
Dinescu (2002, see also Brook et al. 2003) from the sample of
Chiba & Beers (2000). This feature, which they postulated could
be debris torn from the system that once contained ω Centauri,
was observed as an excess of stars with small retrograde velocities.
However, as can be seen by comparing our Fig. 9 to fig. 15 of Chiba
& Beers (2000), the stars in our SKOa feature are not compatible.
Although our stars indeed have small retrograde velocities, the J ⊥
velocities of Chiba & Beers (2000) are significantly smaller than
ours and no more than one of their stars lies in our SKOa region.

5.2 SKOb, SKOc

It is clear from Fig. 7 that there are a significant number of more
distant stars (2.5 < D < 5 kpc) with large values of J ⊥. To establish
whether these stars are clumped, we must investigate their spatial
distribution along the stripe. As our sampling is very inhomoge-
neous, we are actually interested in identifying locations on the
stripe where the fraction of high-J ⊥ objects is anomalous, rather
than the absolute number.

Since our field of view consists of a narrow 2.◦5 wide stripe at
constant declination, streams will typically cut through the stripe
and be localized in right ascension α. Therefore, we analyse our data
by looking at 2◦ sections in α along the stripe, concentrating only
on bins which contain more than 30 subdwarfs. We calculate the
fraction of stars in a bin with J ⊥ > 2000 kpc km s−1 (considering all
stars with D < 5 kpc), and also the expected fraction as predicted
from our smooth model. When we carry out the calculation of the
binomial probability, we take into account the fact that there are
21 bins with more than 30 stars, i.e. we determine the probabil-
ity that any of these 21 bins has the observed fraction of high-J ⊥
stars. The smooth model predicts a factor of ∼1.9 fewer high-J ⊥
stars in total compared to the observed fraction (60/1717). This
indicates the presence of non-Gaussian tails in the velocity distribu-
tions, and it is these outliers that could harbour potential accretion
remnants.

There are two locations on the stripe where the binomial proba-
bility of obtaining the observed fraction of high-J ⊥ stars is less than
∼0.05 and for which there are more than three such stars. We call
these two clumps SKOb and SKOc. Candidate members of these
overdensities are given in Table 6.

The clump SKOb is located in the range 46◦ < α < 48◦, where
we find that eight of 57 stars have J ⊥ > 2000 kpc km s−1. Our
smooth model predicts that we should see only 2.1 stars and the
corresponding binomial probability is 0.03. Various properties of
the SKOb stars are shown in Fig. 11, from which we see that
there are a significant number of stars in this α range at dis-
tances between 3 and 5 kpc. It is intriguing to note that most
of these objects have retrograde velocities (J z > 0). There is a
clear clump of three stars located in a small region of the (vφ , vθ )
plane2 around (89, −225) km s−1. Furthermore, these three stars
have similar metallicities (〈[Fe/H]〉 = −1.5 dex) and distances (see

2 Note that if these stars were debris from an accreted satellite, one might
naively expect them to also have the same values of vr . However, as can be
seen from the modelling of satellite disruption for the H99 stream, this is not
necessarily the case; although the model presented in Kepley et al. (2007)
is localized in (vz, vφ )-space, it has an extended vr distribution.

Table 6). Given that these stars are close to our limiting distance of 5
kpc, it is worth looking at those stars which lie outside this distance
cut. So in Fig. 11, we also include stars in this α range with dis-
tances up to 8 kpc. Although their velocities are less certain, there
are sufficient stars to warrant their inclusion. Clearly, these more
distant stars reinforce the significance of the potential overdensity.
The clump in the (vφ , vθ ) plane is even more pronounced, with six
stars now lying in this region. All six stars are located in a loose
clump in the (J z, J ⊥) plane, with J z ∈ (670, 1660) kpc km s−1 and
J ⊥ ∈ (2430, 3250) kpc km s−1. Note that these additional three stars
also have similar metallicities to those with D < 5 kpc. If we loosen
the cut on the SSPP flag as above (see Section 5.1), then we do not
gain any additional potential members for this overdensity.

The second clump, SKOc, is located at 28◦ < α < 30◦ and has
seven of 69 stars with J ⊥ > 2000 kpc km s−1. The smooth model
predicts only 1.9 stars (with corresponding binomial probability of
0.07). The properties of these stars are illustrated in Fig. 12. Unlike
SKOb, there is no obvious clumping in velocity space. However,
of note is the pair of two metal-poor stars which lie at very similar
distances (D ≈ 4.1, 4.6 kpc, [Fe/H] ≈ −2.6, −2.6 dex) and are
relatively close to each other on the sky (separated by half a degree).
These two stars are located in close proximity in the (vφ , vθ ) plane,
but their angular momenta are not particularly close (J ⊥ ≈ 2000 ±
460, 2890 ± 730 kpc km s−1). This means that the chance of these
two stars belonging to a kinematic overdensity is perhaps unlikely.
Despite this, their case is strengthened to some extent when we
include stars with less secure parameters; there is one additional
metal-poor star located in the (vφ , vθ ) plane at (162, −202) km s−1

with D ≈ 6.6 kpc and [Fe/H] ≈ −2.5 dex. As well as being more
distant than our standard cut of 5 kpc, there is also a cautionary flag
raised in the SSPP. The flag records that the star may be exhibiting
a strong CH G band (around 4300 Å) relative to what is expected
for a ‘normal’ star (Lee et al. 2008a) and implies that the spectral
parameters should be treated with caution. It lies very close in
the sky to the pair of metal-poor stars previously mentioned, but
given the various uncertainties it is far from clear whether we can
claim that it is associated with the pair of metal-poor stars in this
region. Therefore, in conclusion, the validity of this feature is rather
tentative, and it could simply illustrate that we have reached the
limits of this method.

6 C O N C L U S I O N S

This paper has presented a catalogue of ∼1700 halo subdwarfs
within a heliocentric distance of ∼5 kpc. Our analysis is restricted
to a particular patch of sky, Stripe 82 of the SDSS, and exploits the
light-motion curve catalogue constructed by Bramich et al. (2008).
The exceptional precision of the SDSS photometry allows us to de-
termine distances with an uncertainty of ∼10 per cent from a photo-
metric parallax relation. As a consequence, we obtain high-quality
tangential velocities (with typical errors of 30–50 km s−1) using the
proper motions derived from the light-motion curves. Radial veloc-
ities are obtained from SDSS spectra. So, this sample of halo stars
has full six-dimensional phase-space information, allowing us to
probe in detail the kinematical structure of the stellar halo. As our
data are restricted to Stripe 82, we may be susceptible to spatial
variations present in the halo population. However, even if the halo
population is not well mixed, our ∼250 square degree field-of-view
is sufficiently large to overcome any small-scale effects.

The size of our sample allows us to determine the orientation and
semi-axes of the velocity ellipsoid of the stellar halo to excellent
accuracy. The velocity ellipsoid is almost precisely aligned in the
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Figure 11. Properties of the SKOb overdensity (see Section 5.2 and Table 6). The coloured symbols denote stars with J⊥ > 2000 kpc km s−1 and are
colour-coded according to metallicity, with SKOb members (large symbols) differentiated from other high-J⊥ stars (small symbols). The triangles denote
stars with D > 5 kpc, which have larger uncertainties in their kinematics. We also show stars with J⊥ < 2000 kpc km s−1 for comparison (small points). The
vertical dashed lines denote the right ascension range 46◦ < α < 48◦. Note the lack of high-J⊥ stars outside of this range.

Figure 12. Properties of SKOc sample stars in the range 28◦ < α < 30◦ (see Section 5.2 and Table 6). The upper-middle and upper-left panels also show stars
outside this α range for comparison. The coloured symbols denote stars with J⊥ > 2000 kpc km s−1 and are colour-coded according to metallicity, with the
two metal-poor SKOc members (large symbols) differentiated from other high-J⊥ stars (small symbols).

spherical polar coordinate system, indicating that the total potential
must be nearly spherical (Smith et al. 2009). The velocity disper-
sions are (σ r, σφ , σ θ ) = (143 ± 2, 82 ± 2, 77 ± 2) km s−1. The
values of the dispersions are significantly smaller than previous esti-
mates, although the ratios of the dispersions are in good agreement.
A simple distribution function that matches the kinematic data is
constructed – and it suggests that the density of the stellar halo is
only mildly flattened and falls off with distance like ρ ∼ r−3.75.

The stellar halo exhibits no net rotation. The velocity dispersions
are reasonably well fit by a Gaussian, with the exception of the

vφ component which is asymmetric. We believe that this is a real
effect. It appears to be more pronounced for metal-rich stars in our
sample. None of the kinematic substructures is able to account for
this asymmetry.

On the issue of substructure, we confirm the presence of the
stream identified by Helmi et al. (1999). Using the angular momen-
tum components (J z, J ⊥), we find a number of other potential sub-
structures, which we label SKOs. Two of these new features are par-
ticularly striking, containing a number of stars that are localized in
both kinematics and metallicity. The metal-poor overdensity SKOa
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(〈[Fe/H]〉 ≈ −2.1 dex) appears to be coincident in the (J z, J ⊥)
plane with an association of four globular clusters (NGC 5466,
NGC 6934, NGC 7089/M2 and NGC 6205/M13), suggesting that
they may have been part of the same accretion event. If so, then
this implies that the progenitor must have been a large satellite,
similar in size to Fornax. We are currently investigating the orbits
of these stars and clusters and plan to test this hypothesis using
simulations.
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Dotter A., Chaboyer B., Jevremović D., Kostov V., Baron E., Ferguson
J. W., 2008, ApJS, 178, 89

Eisenstein D. J. et al., 2006, ApJS, 167, 40
Fellhauer M. et al., 2006, ApJ, 651, 167
Fellhauer M., Evans N. W., Belokurov V., Wilkinson M. I., Gilmore G.,

2007, MNRAS, 380, 749
Freeman K. C., 1987, ARA&A, 25, 603
Girard T. M., Korchagin V. I., Casetti-Dinescu D. I., van Altena W. F., López
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APPENDI X A : POTENTI AL C ONTA MI NANTS

There are three main sources of contamination: white dwarfs, disc
dwarfs and background giants. We discuss each in turn and conclude
that our contamination level is less than ∼1 per cent.

A1 White dwarfs

In an RPM diagram, the white dwarfs are fainter and bluer than the
halo subdwarfs. Their presence in Fig. 1 is only just discernible as
the cloud around [(g − i), Hr] ≈ (−0.4, 17). Although the density of
white dwarfs in this figure is clearly small, it is possible that white
dwarfs with small proper motions enter our subdwarf region. As
stated in Section 2.2, we require that the SSPP flag is set to ‘nnnn’.
This flag includes a check for candidate white dwarfs (Lee et al.
2008a), and so our sample should be free from such contamination.
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As a check, we cross-matched our subdwarf sample with the
catalogue of spectroscopically confirmed white dwarfs from the
fourth Data Release (DR4) of the SDSS (Eisenstein et al. 2006).
This catalogue was constructed via both automated criteria and
visual inspection and so should be reasonably complete. We find
that none of their white dwarfs overlaps with our subdwarf sample.
Although the Eisenstein et al. (2006) catalogue contains only DR4
data, we know that ∼60 per cent of our subdwarf spectra were
included in DR4 and so, assuming the fraction of white dwarfs does
not vary with SDSS data releases, we can expect �1 white dwarf to
contaminate our subdwarf sample.

A2 Disc dwarfs

Although our RPM cut in Section 2.1 rejects stars with kinematics
similar to the Sun (hence retaining mainly fast-moving halo stars),
it is possible that some disc stars could enter our sample. Contam-
ination by thin-disc stars is negligible due to two factors. First, the
small scaleheight (∼200 pc) of the thin disc means that our sample,
which goes out to a few kpc below the plane, should have minimal
contamination. Secondly, the thin disc is cold so that it is highly
unlikely that a thin-disc star would have large enough proper mo-
tion to pass our RPM cut. However, it is possible that there may
be some contamination from the hotter thick-disc component. Pre-
vious studies based on similar RPM cuts have found levels of disc
contamination to be of the order of 2 per cent (Gould 2007).

To quantify the contamination from disc dwarfs in our sample,
we analyse the kinematics of the stars. We calculate the probability
that a star belongs to a particular population (i.e. thin disc, thick
disc or halo) by comparing its velocity to a toy model constructed
using Gaussian distributions for each component of the velocity,
taking into account the different scaleheights and local density nor-
malizations. For the scaleheights and disc kinematics, we follow
Smith et al. (2007), with the exception of the mean rotation velocity
of the thick disc which we model using the parameters determined
from Girard (2006), i.e. vφ = −195 + 30 |z| km s−1. We model the
halo component using the kinematics of Kepley et al. (2007) and
assume that the halo density does not vary significantly within the
volume probed. As expected, we find that none of our stars is com-
patible with the thin disc. For the thick disc, we analyse the stars
with [Fe/H] > −1.5 dex, since this is the 3σ lower limit on the
thick-disc metallicity according to Soubiran, Bienaymé & Siebert
(2003). Although there are no stars in this [Fe/H] range with thick-
disc membership probabilities of greater than 0.36, there are six
stars with probabilities of between 0.2 and 0.36. If we add up the
thick-disc probabilities of all stars in this [Fe/H] range, we can es-
timate the total level of contamination. Note that this will probably
be an overestimate because the kinematics of the thick disc overlap
those of the halo, which implies that even a pure halo sample will
be estimated to have a non-zero level of contamination. Using this
technique, we estimate that the thick-disc contamination should be
no more than 10.2 stars, i.e. less than 1 per cent. This should have
little bearing on our results. As a test, we repeated the analysis of
Section 3 using only stars at distances of more than 2.5 kpc from
the Galactic plane and found that global kinematic properties were
unchanged.

A3 Background giants

Another possible source of contamination is from faint background
giants. However, given the RPM cut, we see that a star must have a
sufficiently high μ to shift it into the subdwarf regime. For example,

a stationary distant star with r = 19 mag and a spurious μ =
4 mas yr−1 would have Hr = 12 mag. If the star was blue enough,
then it could conceivably pass the Hr cut. However, in our final
subdwarf sample we find that the star with the least significant
proper motion is inconsistent with μ = 0 at the 2.5σ level, which
means contamination from distant (and hence stationary) stars is
negligible.

A P P E N D I X B: TU R N - O F F C O R R E C T I O N FO R
P H OTO M E T R I C PA R A L L A X R E L AT I O N

We estimate distances using a photometric parallax relation based
on Ivezić et al. (2008), who construct a relation using data from
a number of globular clusters. They first determine a (g − i) −
Mr colour–magnitude sequence for stars on the main sequence
by identifying the colour of the main-sequence turn-off for these
clusters (i.e. the point at which the slope of the colour–magnitude
relation becomes vertical) and discarding all data within 0.05 mag
of the turn-off. Once they have this relation, they then devise a
correction to account for the presence of the main-sequence turn-
off, which they base on the sequence for the cluster M13.

However, the morphology of the colour–magnitude relation
around the turn-off region will clearly be dependent on both metal-
licity and age, and so we would like to construct a correction which
incorporates these effects. In order to do this, we use the stellar
models of Dotter et al. (2008), taking isochrones with ages from 1
to 15 Gyr (in steps of 0.5 Gyr) and [Fe/H] from −0.5 to −2.5 (in
steps of 0.5 dex). Following the compilation of Venn et al. (2004),
we choose [α/Fe] = 0.3, which is representative for our halo [Fe/H]
range.

We take each set of isochrones and, in the same manner as Ivezić
et al. (2008), we shift each sequence so that it has Mr = 0 for
(g − i) = 0.6. Then, for a given [Fe/H], we calculate mean Mr as a
function of (g − i) in the range 0.3 < (g − i) < 0.6, considering only
model data up to the main-sequence turn-off. Since we know the
approximate age distribution of the halo population, we calculate a
weighted mean using a Gaussian prior with mean and σ of 10 and
2 Gyr, respectively.3 We then calculate the offset between the mean
model magnitude and the uncorrected relation of Ivezić et al. (2008),
i.e. given in equations (A1–A5). This is shown in Fig. B1, where
the effect of the turn-off correction is to increase the brightness of
stars compared to the uncorrected relation.

These data are then fit with a third-order polynomial, resulting
in the following equation which is applicable for stars in the range
0.3 < (g − i) < 0.6 and −2.5 < [Fe/H] < −0.5,

�MTO
r = a0 x + a1 x y + a2 x3 + a3 x2 y + a4 x y2, (B1)

where x = (g − i) − 0.6, y = [Fe/H] and a0 = 2.87, a1 = 2.25, a2 =
− 9.79, a3 = 2.07, a4 = 0.31. Note that we do not include terms
depending solely on y since we require the relation to go through
�MTO

r = 0 for (g − i) = 0.6. We also discard the x2 term since this
has no effect on the fit. Although the fit is far from perfect, given the
overall uncertainties in the method we believe this should provide
a reasonable approximation.

In order to avoid any divergent behaviour in this relation, we do
not extrapolate equation (B1) beyond [Fe/H] = (−2.5, −0.5). For
stars with metallicities outside this range, we use the relation at the

3 One could also incorporate a prior based on the initial mass function or,
equivalently, the luminosity function. However, we investigated this and
found that it had a negligible effect on our results.
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Figure B1. Our correction to the photometric parallax relation due to the
main-sequence turn-off. The points denote mean magnitudes from the stellar
models and the corresponding solid curves denote the polynomial fit given
in equation (B1), with [Fe/H] increasing from −2.5 (bottom line) to −0.5
(top line). The dashed line corresponds to the turn-off correction of Ivezić
et al. (2008).

limit of our allowed range (i.e. −2.5 dex for the metal-poor stars
and −0.5 dex for the metal-rich stars). This has very little bearing
on our results: although we have around 30 stars with 0.3 < (g −
i) < 0.6 and [Fe/H] < −2.5, the relation converges at the metal-
poor end and so the [Fe/H] = −2.5 relation should provide a good
approximation; from Fig. B1, it can be seen that the relation does
not converge at the metal-rich end, but this is of little consequence
since there are fewer than 10 stars with 0.3 < (g − i) < 0.6 and
[Fe/H] > −0.5.

Clearly, the uncertainties on the parallax relation will be larger
in this colour range due to the scatter in this turn-off correction.
To estimate the uncertainty, we calculate the standard deviation in
Mr when we calculate the mean. The scatter varies as a function of
colour and metallicity, but if we take the relation with the largest
scatter (corresponding to [Fe/H] = −0.5 dex) we find the following
relation:

δ
(
�MTO

r

) = 0.39 − 0.65 (g − i). (B2)

When estimating distances for our stars, we add this uncertainty in
quadrature to the other sources of error.
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