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ABSTRACT
We present a selection of methods for automatically constructing an optimal kernel model for
difference image analysis which require very few external parameters to control the kernel
design. Each method consists of two components; namely, a kernel design algorithm to generate
a set of candidate kernel models, and a model selection criterion to select the simplest kernel
model from the candidate models that provides a sufficiently good fit to the target image.
We restricted our attention to the case of solving for a spatially invariant convolution kernel
composed of delta basis functions, and we considered 19 different kernel solution methods
including six employing kernel regularization. We tested these kernel solution methods by
performing a comprehensive set of image simulations and investigating how their performance
in terms of model error, fit quality, and photometric accuracy depends on the properties of
the reference and target images. We find that the irregular kernel design algorithm employing
unregularized delta basis functions, combined with either the Akaike or Takeuchi information
criterion, is the best kernel solution method in terms of photometric accuracy. Our results are
validated by tests performed on two independent sets of real data. Finally, we provide some
important recommendations for software implementations of difference image analysis.

Key words: methods: data analysis – methods: statistical – techniques: image processing –
techniques: photometric.

1 IN T RO D U C T I O N

In astronomy, the technique of difference image analysis (DIA)
aims to measure changes, from one image to another, in the objects
(e.g. stars, galaxies, etc.) observed in a particular field. Typically
these changes consist of variations in flux and/or position. However,
the variations in the object properties that we are interested in are
entangled with the differences in the sky-to-detector (or scene-to-
image) transformation between pairs of images. Therefore, the DIA
method must carefully model the changes in astrometry, throughput,
background, and blurring between an image pair in order to extract
the required astronomical information.

The state of the art in DIA has evolved substantially over the last
decade and a half. Possibly the most complicated part of DIA is the
optimal modelling of the convolution kernel describing the changes
in point-spread function (PSF) between images. The seminal paper
by Alard & Lupton (1998) set the current framework for doing this
by detailing the expansion of the kernel as a linear combination of
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basis functions. Alard (2000) subsequently showed how to model a
spatially varying convolution kernel by modelling the coefficients
of the kernel basis functions as polynomials of the image coordi-
nates. The most important ingredient then in constructing a kernel
solution in the Alard DIA framework is the definition of the set
of kernel basis functions. The main developments in this area were
achieved by Alard & Lupton (1998), who defined the Gaussian basis
functions, Bramich (2008) and Miller, Pennypacker & White (2008)
who introduced the delta basis functions (DBFs), and Becker et al.
(2012, hereafter Be12) who conceived of the regularized DBFs. A
detailed discussion of the kernel basis functions presented in the
DIA literature may be found in Bramich et al. (2013, hereafter
Br13).

The traditional Gaussian basis functions require the specification
of numerous parameters while demanding precise sub-pixel image
registration for optimal results, as do many other sets of kernel basis
functions (e.g. the network of bicubic B-spline functions introduced
by Yuan & Akerlof 2008). Consequently, the optimal choice of
parameters for generating such sets of basis functions is not obvious,
although some investigation into this issue has been performed
(Israel, Hessman & Schuh 2007). In contrast, the DBFs have the
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ultimate flexibility to represent a discrete kernel of any form while
requiring the absolute minimal user specification; namely the kernel
size and shape (or equivalently the set of ‘active’ kernel pixels).
They may even be used to model fractional pixel offsets between
images, avoiding the need for image resampling in the absence of
other image misalignments (rotation, scale, shear, and distortion).
Unsurprisingly then, DIA photometry for kernels employing DBFs
has been shown to be better than that produced for kernels using
Gaussian basis functions (Albrow et al. 2009). However, the use of
DBFs yields somewhat noisier kernel solutions than is desirable due
to the relatively large number of parameters in the kernel model. To
tackle this weakness of the DBFs, Be12 developed the regularized
DBFs through the elegant application of Tikhonov regularization
to the kernel model. This refined approach produces very clean
and low-noise kernel solutions at the expense of introducing an
extra parameter λ into the kernel definition, where the value of λ

controls the strength of the regularization. Be12 recommend values
of λ between 0.1 and 1 for square kernels of size 19 × 19 pixels
although they caution that the optimal value will likely be data set
dependent.

The next logical step in the development of DIA is to investigate
how the properties of the image pair under consideration influence
the composition of the optimal kernel model (i.e. the optimal set
of DBFs, the optimal values of their coefficients, and the optimal
value of λ). In this context, ‘optimality’ refers both to the Principle
of Parsimony, in that the optimal kernel model should constitute the
simplest configuration of DBFs that provides a sufficiently good fit
to the data, and to appropriate/relevant model performance mea-
sure(s). The proposed investigation may be accomplished both by
generating and analysing a comprehensive set of simulated images,
and by testing on a wide variety of real image data. Neither of these
tasks have yet been attempted.

Various model selection criteria have been developed from dif-
ferent statistical view-points as implementations of the Principle of
Parsimony (e.g. the Aikaike information criterion – Akaike 1974,
the Bayesian information criterion – Schwarz 1978, etc.) and each
one may be used to automatically select a parsimonious model from
a set of models.1 Due to the sheer number of possible combinations
of DBFs that may constitute the kernel model, the set of models
that can be considered will be limited to a set of feasible candidate
kernel models defined via the adoption of an appropriate kernel de-
sign algorithm. The performance of each model selection criterion
may then be assessed by measuring the quality of the correspond-
ing kernel solution with respect to one or more desired metric(s).
The final result will then be a recommendation, dependent on the
properties of the image pair under consideration, as to which model
selection criterion should be adopted to consistently yield the best
kernel solutions for the specified kernel design algorithm.

In this paper, we report on the results of having carried out the
proposed investigation for both the unregularized and regularized
DBFs (Section 2) using simulated images (Section 5) and real data
(Section 6). We restrict attention to the case of solving for a spa-
tially invariant convolution kernel. The performance of three pro-
posed kernel design algorithms (Section 4) coupled with up to eight
model selection criteria (Section 3) was assessed with regards to
model error (simulations only), fit quality, and photometric accu-
racy. In total, 19 methods were tested. The conclusions and recom-
mendations from our investigation are detailed in Section 7.

1 We note that the application of a model selection criterion to model fitting
may also be viewed as a regularization technique.

2 MO D E L L I N G T H E C O N VO L U T I O N K E R N E L

In this section, we briefly describe the methods used in this paper
to solve for the spatially invariant convolution kernel matching the
PSF between two images of the same field.

2.1 Solving for a spatially invariant kernel: recap

Consider a pair of registered images of the same field with the
same dimensions and sampled on the same pixel grid. To avoid
invalidating the assumption of a spatially invariant kernel model, the
image registration should be such that at most there is a translational
offset of a few pixels between the images, with no rotational (or
other) image misalignments. Let the images be referred to as the
reference image R and the target image I with pixel values Rij and Iij,
respectively, where i and j are pixel indices referring to the column
i and row j of an image.

We model the target image I as a model image M formed by
the convolution of the reference image R with a spatially invariant
discrete convolution kernel K plus a spatially invariant (constant2)
differential background B:

Mij = [R ⊗ K]ij + B, (1)

where the Mij are the pixel values of the model image. As in Alard
& Lupton (1998), we model K as a linear combination of basis
functions:

Krs =
Nκ∑
q=1

aq κqrs , (2)

where the Krs are the kernel pixel values, r and s are pixel indices
corresponding to the column r and row s of the discrete kernel, Nκ is
the number of kernel basis functions, and the κqrs are the pixel values
of the qth discrete kernel basis function κq with corresponding
coefficient aq. Substitution of equation (2) into equation (1) yields:

Mij =
Nκ∑
q=1

aq [R ⊗ κq ]ij + B (3)

with

[R ⊗ κq ]ij =
∑
rs

R(i+r)(j+s)κqrs . (4)

The image [R ⊗ κq]ij is referred to as a basis image. The model
image M has Npar = Nκ + 1 parameters. Note that equation (3) may
be derived as a special case of equation 8 from Br13.

Assuming that the target-image pixel values Iij are indepen-
dent observations drawn from normal (or Gaussian) distributions
N (Mij , σij ) and that the parameters aq and B of the model im-
age have uniform Bayesian prior probability distribution functions
(PDFs), then the maximum likelihood estimator (MLE) of aq and B
may be found by minimizing the chi-squared:

χ2 =
∑

ij

(
Iij − Mij

σij

)2

. (5)

This is a general linear least-squares problem (see Press et al. 2007)
with associated normal equations in matrix form:

Hα = β (6)

2 All of the results in this paper are easily generalized to the case of a dif-
ferential background that is a polynomial function of the image coordinates
(e.g. see Br13).
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where the symmetric and positive-definite (Nκ + 1) × (Nκ + 1)
matrix H is the least-squares matrix, the vector α is the vector of
Nκ + 1 model parameters, and β is another vector. For the vector
of parameters:

αq =
{

aq for 1 ≤ q ≤ Nκ

B for q = Nκ + 1,
(7)

the elements of H and β are given in terms of the basis images by

Hqq ′ =
∑

ij

ψqij ψq ′ij

σ 2
ij

(8)

βq =
∑

ij

ψqij Iij

σ 2
ij

(9)

ψqij = ∂Mij

∂αq

=
{

[R ⊗ κq ]ij for 1 ≤ q ≤ Nκ

1 for q = Nκ + 1.
(10)

Cholesky factorization of H, followed by forward and back sub-
stitution is the most efficient and numerically stable method (Golub
& Van Loan 1996) for obtaining the solution α = α̂ to the normal
equations (i.e. α̂ is the vector of MLEs of the model parameters).
The inverse matrix H−1 is the covariance matrix of the parameter es-
timates cov (α̂q , α̂q ′ ) = [H−1]qq ′ and consequently the uncertainty
σ q in each α̂q is given by

σq =
√

[H−1]qq . (11)

For the spatially invariant kernel, the photometric scale factor P
between the reference and target image is a constant:

P =
∑
rs

Krs . (12)

As noted by Bramich (2008), it is good practice to subtract an
estimate of the sky background level from R before solving for K
and B in order to minimize any correlation between P and B.

We adopt a noise model for the model image pixel uncertainties
σ ij of

σ 2
ij = σ 2

0

F 2
ij

+ Mij

G Fij

, (13)

where σ 0 is the CCD readout noise (ADU), G is the CCD gain
(e−/ADU), and Fij is the flat-field image. The σ ij depend on the
Mij which renders our maximum likelihood problem as a non-linear
problem and also requires that the MLE of the model image pa-
rameters is obtained by minimizing χ2 + ∑

ij ln(σ 2
ij ) instead of χ2.

However, iterating the solution by considering the σ ij and Mij in
turn as fixed is an appropriate linearization of the problem that still
allows for the model image parameters to be determined by min-
imizing χ2 at each iteration as described above (since the σ ij are
considered as constant whenever the model image parameters are
being estimated). For the first iteration, we estimate the σ ij by ap-
proximating Mij in equation (13) with Iij. A k-sigma-clip algorithm
is employed at the end of each iteration except for the first to prevent
outlier target-image pixel values from influencing the solution (e.g.
cosmic rays, variable stars, etc.). The criterion for pixel rejection is
|εij| = |(Iij − Mij)/σ ij| ≥ k, and we use k = 4. Only 3–4 iterations are
required for convergence and the final solution is highly insensitive
to the initial choice of σ ij (e.g. setting all of the σ ij to unity for the
first iteration gives exactly the same result as setting the σ ij by ap-
proximating Mij in equation 13 with Iij). Finally, it should be noted

that lack of iteration introduces a bias into the kernel and differential
background solution (see Br13 for a discussion and examples).

The difference image D is defined by

Dij = Iij − Mij (14)

from which we may define a normalized difference image

εij = Dij/σij . (15)

In the absence of varying objects, and for a reliable noise model, the
distribution of the εij values provides an indication of the quality of
the difference image; namely, the εij should follow a Gaussian dis-
tribution with zero mean and unit standard deviation. If the εij follow
a Gaussian distribution with significant bias or standard deviation
greater than unity, then systematic errors are indicated, which may
be due to underfitting. If they follow a Gaussian distribution with
standard deviation less than unity, then overfitting may be indicated.
If they follow a non-Gaussian distribution, then an inappropriate
noise model may be at least part of the cause.

2.2 The DBFs

The final ingredient required to construct a kernel solution is the
definition of the set of kernel basis functions, which in turn defines
the set of basis images. In this paper, we consider only the DBFs,
which are defined by

κqrs = δrμ δsν, (16)

where a one-to-one correspondence q↔(μ, ν) associates the qth
kernel basis function κq with the discrete kernel pixel coordinates
(μ, ν), and δij is the Kronecker delta function:

δij =
{

1 if i = j

0 if i �= j .
(17)

As such, each DBF κq and its corresponding coefficient aq repre-
sent a single kernel pixel and its value, respectively. Note that this
definition of the DBFs ignores the transformation that is required
when the photometric scale factor is spatially varying (Br13).

The DBFs have a conveniently simple expression for the corre-
sponding basis images:

[R ⊗ κq ]ij = R(i+μ)(j+ν). (18)

2.3 Regularizing the DBFs

For the DBFs, Be12 introduced a refinement to the normal equations
to control the trade-off between noise and resolution in the kernel
solution. They used Tikhonov regularization (see Press et al. 2007)
to penalize kernel solutions that are too noisy by adding a penalty
term to the chi-squared that is derived from the second derivative of
the kernel surface and whose strength is parametrized by a tuning
parameter λ. The addition of a penalty term to the chi-squared is
equivalent to adopting a non-uniform Bayesian prior PDF on the
model parameters. The corresponding maximum penalized likeli-
hood estimator (MPLE) of aq and B is obtained by minimizing:

χ2 + λNdat α
T LT Lα =

∑
ij

(
Iij − Mij

σij

)2

+ λNdat

Nκ∑
q=1

Nκ∑
u=1

Nκ∑
v=1

aq Luq Luv av, (19)
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where Ndat is the number of data values3 (i.e. target-image pixels)
and L is an (Nκ + 1) × (Nκ + 1) matrix with elements:

Luv

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Nadj,u for v = u ≤ Nκ , and where Nadj,u is the number of

DBFs adjacent to the DBF corresponding to u,

−1 for u ≤ Nκ , v ≤ Nκ , v �= u, and u and v

corresponding to adjacent DBFs,

0 otherwise.

(20)

We consider two DBFs to be adjacent if they share a common
kernel-pixel edge, connected if they can be linked via any number
of pairs of adjacent DBFs, and disconnected if they are not con-
nected. Note that the elements of the last row and column of L,
corresponding to the differential background parameter B, are all
zero.

The matrix L is the Laplacian matrix representing the connec-
tivity graph of the set of DBFs (cf. graph theory). It is symmetric,
diagonally dominant, and positive-semidefinite. All of the eigen-
values of L are non-negative, while Ngrp + 1 of them are equal to
zero. Here, Ngrp is the number of disconnected sets of connected
DBFs within the full set of DBFs (i.e. the number of components of
the connectivity graph). Consequently, the rank of L is Nκ − Ngrp,
as is the rank of LT L = LL, which are facts that we will use later
in Section 3.4. It is also useful to note that if all of the DBFs are
connected to each other, then L and LL are both of rank Nκ − 1.
In Appendix A, we present a couple of example kernels with their
corresponding L matrices.

The expression in equation (19) is at a minimum when its gradient
with respect to each of the parameters aq and B is equal to zero.
Performing the Nκ + 1 differentiations and rewriting the set of
linear equations in matrix form we obtain the regularized normal
equations:

HP α = β (21)

where

HP = H + λNdat LL. (22)

Obtaining the solution to the regularized normal equations now
proceeds as for the normal equations in Section 2.1. The covariance
matrix of the parameter estimates α = α̂P is similarly given by
cov (α̂P,q , α̂P,q ′ ) = [H−1

P ]qq ′ .

3 M O D E L S E L E C T I O N C R I T E R I A

Here, we describe our statistical tool-kit of model selection criteria
that we will use for deciding on the best set of DBFs to be employed
in the modelling of the convolution kernel. The criteria are valid for
linear models, such as our model image M in equation (3), and
for data drawn from independent Gaussian distributions, which is a
valid approximation to the Poissonian statistics of photon detection
for CCD image data I that only breaks down at very low signal lev-
els (� 16 e−). We direct the reader to Konishi & Kitagawa (2008)
for an essential reference on the information criteria presented
below.

3 Be12 accidentally omitted Ndat from their equation 12.

3.1 Hypothesis testing for nested models

3.1.1 χ2-test

The χ2-test may be used to compare two models A and B with pa-
rameter sets PA and PB, respectively, that are nested (i.e. PA ⊂ PB).
The χ2-statistic is defined by

χ2 = χ2
A − χ2

B, (23)

where χ2
A and χ2

B are the chi-squared values of models A and
B, respectively (see equation 5). Under the null hypothesis that
model B does not provide a significantly better fit than model A,
the χ2-statistic follows a chi-squared distribution with Npar, B −
Npar, A degrees of freedom (DoF). We set our χ2 threshold for
rejection of the null hypothesis at 1 per cent (e.g. χ2 � 6.63
for DoF = 1). We adopt the chi-squared values of models A
and B as those calculated during the first iteration of our kernel
solution procedure to enable a fair comparison between models
since they are both computed using the same pixel uncertainties
(i.e. the σ ij estimated by approximating Mij in equation 13 with
Iij). However, the values of the model image parameters are still
taken as those calculated in the final iteration of the kernel solution
procedure.

Model selection using the χ2-test applies only to models A,
B,..., Z with sequentially nested parameter sets PA ⊂ PB ⊂ . . . ⊂ PZ.
Starting with models A and B, the χ2 is minimized for each model
and the χ2-test is used to determine whether or not model B pro-
vides a significantly better fit than model A. If it does not, then
model A is accepted as the correct model and the procedure termi-
nates, otherwise the next pair of models B and C are evaluated using
the same method. The procedure continues by evaluating sequential
model pairs in this fashion until either the χ2-test indicates that
the next model does not provide a significantly better fit or until
there are no more models to test.

3.1.2 F-test

The F-test may also be used to compare two nested models A and
B. The F-statistic is defined by

F = χ2/
(
Npar,B − Npar,A

)
χ2

B/
(
Ndat − Npar,B

) , (24)

where Ndat is the number of data values. Again, under the null
hypothesis that model B does not provide a significantly better fit
than model A, F follows an F-distribution with DoF = (Npar, B −
Npar, A, Ndat − Npar, B). We set our F threshold for rejection of the null
hypothesis at 1 per cent (e.g. F � 4.63 for DoF = (2,1000)) and
we compute the F-statistic using the chi-squared values of models
A and B calculated during the first iteration of our kernel solution
procedure. Model selection with the F-test applies to models A,
B,..., Z with sequentially nested parameter sets and proceeds in the
same way as model selection with the χ2-test.

3.2 Information criteria for maximum likelihood

The principal of maximum likelihood assumes a uniform prior PDF
on the model parameters. A consequence of this is that as parameters
are added to a model, the maximum likelihood always increases,
rendering it useless for the purpose of model selection between
models with different dimensionality. Information criteria are used
as an alternative for evaluating models with different numbers of

MNRAS 457, 542–574 (2016)

 at Q
atar Foundation for E

ducation, Science and C
om

m
un on February 1, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
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parameters. They may be applied regardless of whether the models
under consideration are nested or non-nested.

3.2.1 AICC

The Akaike information criterion (AIC; Akaike 1974) is derived as
an asymptotic approximation to the Kullback–Leibler divergence
(Kullback & Leibler 1951),4 which measures the distance of a can-
didate model from the true underlying model under the assumption
that the true model is of infinite dimension and is therefore not
represented in the set of candidate models. The aim of the AIC is
to evaluate models based on their prediction accuracy.

A version of the AIC for Gaussian linear regression problems that
corrects for the small-sample bias, while being asymptotically the
same as the AIC for Ndat 
 Npar was derived by Sugiura (1978):

AICC = −2 lnL(θ̂ ) + 2Npar

(
Ndat

Ndat − Npar − 1

)
, (25)

whereL(θ ) is the likelihood function for the vector of model param-
eters θ , and θ̂ is a vector of MLEs for the model parameters. Model
selection with the AICC is performed by minimizing −2 lnL(θ ) for
each model, and then minimizing AICC over the full set of models
under consideration.

3.2.2 TIC

The Takeuchi information criterion (TIC; Takeuchi 1976) is a gen-
eralization of the AIC (Konishi & Kitagawa 2008) given by

TIC = −2 lnL(θ̂ ) + 2tr
(
I(θ̂ ) J−1(θ̂)

)
, (26)

where tr is the matrix trace operator. The matrices I and J are defined
as

I(θ ) = 1

Ndat

Ndat∑
i=1

∂ ln li(θ )

∂θ

∂ ln li(θ )

∂θT (27)

J(θ ) = −
(

1

Ndat

)
∂2 lnL(θ )

∂θ ∂θT (28)

lnL(θ ) =
Ndat∑
i=1

ln li(θ ), (29)

where li(θ ) is the likelihood function for the ith (single) data point.
Model selection with the TIC proceeds as for the AICC.

3.2.3 BIC

The Bayesian approach to model selection is to choose the model
with the largest Bayesian posterior probability. By approximating
the posterior probability of each model, Schwarz (1978) derived the
Bayesian information criterion (BIC) for model selection:

BIC = −2 lnL(θ̂ ) + Npar ln Ndat − Npar ln 2π. (30)

The BIC generally includes a heavier penalty than the AICC for
more complicated models (e.g. in the regime Npar < 20 and Ndat >

4 Use of the AIC as a model selection criterion is also equivalent to assuming
a prior PDF on the model parameters that is proportional to exp (−Npar),
hence favouring models with smaller numbers of parameters.

100), therefore favouring models with fewer parameters than those
favoured by the AICC. Model selection with the BIC proceeds as
for the AICC.

3.2.4 BICI

Konishi, Ando & Imoto (2004) performed a deeper Bayesian anal-
ysis to derive an improved BIC:

BICI = −2 lnL(θ̂ ) + Npar ln Ndat

+ ln(det(J(θ̂ ))) − Npar ln 2π. (31)

Model selection with the BICI proceeds as for the AICC.
It is worth mentioning that the BIC and BICI are consistent model

selection criteria in that they select with high probability the true
model from the set of candidate models whenever the true model is
represented in the set of candidate models.

3.3 Information criteria for maximum penalized likelihood

The AIC, AICC, TIC, BIC, and BICI apply only to models estimated
by maximum likelihood.

3.3.1 GICP

Konishi & Kitagawa (1996) derived a further generalization of the
AIC and TIC, called the generalized information criterion (GIC),
that can be applied to model selection for models with parameters
estimated by maximum penalized likelihood:

GICP(λ) = −2 lnL(θ̂P) + 2tr
(

IP(θ̂P) J−1
P (θ̂P)

)
, (32)

where θ̂P is a vector of MPLEs for the model parameters, and

IP(θ) = I(θ ) − λ

Ndat
LT L θ

∂ lnL(θ )

∂θT (33)

JP(θ ) = J(θ ) + λLT L. (34)

Here LT L is an Npar × Npar matrix and we have used the fact that
it is symmetric to slightly simplify the Konishi & Kitagawa (1996)
expressions for IP(θ ) and JP(θ ) (their equation 21). Model selection
with the GICP(λ) is performed by minimizing GICP(λ) over λ for
each model, and then selecting the model for which GICP(λ) is
minimized over the full set of models under consideration.

3.3.2 BICP

Using the same Bayesian analysis as for the derivation of the BICI,
Konishi et al. (2004) also extended the BICI to apply to model selec-
tion for models with parameters estimated by maximum penalized
likelihood. For LT L of rank Npar − d, and denoting the product of
the Npar − d non-zero eigenvalues of LT L by �+, they derived:

BICP(λ) = −2 lnL(θ̂P) + d ln Ndat + ln(det(JP(θ̂P)))

− d ln 2π + λNdat θ̂
T

P LT L θ̂P − ln �+
− (Npar − d) ln λ. (35)

Model selection with the BICP(λ) proceeds as for the GICP(λ).
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3.4 Information criteria for DIA

We may adapt the various information criteria from Sections 3.2 and
3.3 to our problem of solving for the kernel and differential back-
ground in DIA. The model image M has Npar = Nκ + 1 parameters

and we use the notation θ ≡ α, θ̂ ≡ α̂ and θ̂P ≡ α̂P.
First, we compute the log-likelihood function for data drawn from

Gaussian distributions N (Mij , σij ) as

− 2 lnL(α) = χ2 +
∑

ij

ln
(
σ 2

ij

) + Ndat ln 2π. (36)

For model selection purposes, the last term Ndat ln 2π is constant
and can be ignored. Secondly, we note that since the σ ij are con-
sidered as constant at each iteration of the maximum likelihood
problem in Section 2.1, the matrices I(α) and J(α) evaluated at
α = α̂ are given by

[I(α̂)]qq ′ = 1

Ndat

∑
ij

ε2
ij

ψqij ψq ′ij

σ 2
ij

(37)

J(α̂) = H/Ndat. (38)

For computational purposes it is useful to note that I(α̂) is sym-
metric. From these two expressions, we may derive the following
results:

tr
(
I(α̂) J−1(α̂)

) = Ndat

Nκ+1∑
q=1

Nκ+1∑
q ′=1

[I(α̂)]qq ′ [H−1]qq ′ (39)

ln(det(J(α̂))) = ln(det(H)) − (Nκ + 1) ln Ndat. (40)

Finally, we consider that the solution of the normal equations re-
quires the computation of the Cholesky factorization H = GGT,
where G is a lower triangular matrix with positive diagonal entries
gqq, from which we may immediately calculate the determinant of
H as det(H) = ∏Nκ+1

q=1 g2
qq . Hence, with minimal extra computation,

the Cholesky factorization of H yields

ln(det(H)) = 2
Nκ+1∑
q=1

ln gqq . (41)

Therefore, using equations (36) and (39)–(41) for the maximum
likelihood problem in Section 2.1, we have the following formulae
for the relevant information criteria from Section 3.2:

AICC = χ2 +
∑

ij

ln
(
σ 2

ij

) + 2(Nκ + 1)

(
Ndat

Ndat − Nκ − 2

)
(42)

TIC = χ2 +
∑

ij

ln
(
σ 2

ij

) + 2Ndat

Nκ+1∑
q=1

Nκ+1∑
q ′=1

[I(α̂)]qq ′ [H−1]qq ′

(43)

BIC = χ2 +
∑

ij

ln
(
σ 2

ij

) + (Nκ + 1)(ln Ndat − ln 2π) (44)

BICI = χ2 +
∑

ij

ln
(
σ 2

ij

) + 2
Nκ+1∑
q=1

ln gqq − (Nκ + 1) ln 2π.

(45)

Considering now the maximum penalized likelihood problem, for
constant σ ij we have ∂ lnL(α)/∂αT = βT − αTH, which is equal to
λNdat (LLα̂P)T when evaluated at α = α̂P (using equations 21 and
22). Then, using LT L = LL, the matrices IP(α) and JP(α) evaluated
at α = α̂P are given by

IP(α̂P) = I(α̂P) − λ2 (LL α̂P)(LL α̂P)T (46)

JP(α̂P) = HP/Ndat. (47)

Writing �q = ∑Nκ

u=1

∑Nκ

v=1 Lqu Luv α̂P,v , then, from these two ex-
pressions, we may derive the following results:

tr
(
IP(α̂P) J−1

P (α̂P)
) = Ndat

Nκ+1∑
q=1

Nκ+1∑
q ′=1

× (
[I(α̂P)]qq ′ − λ2 �q �q ′

)
[H−1

P ]qq ′

(48)

ln(det(JP(α̂P))) = ln(det(HP)) − (Nκ + 1) ln Ndat (49)

Also, the Cholesky factorization of HP = GPGT
P yields:

ln(det(HP)) = 2
Nκ+1∑
q=1

ln gP,qq . (50)

Finally, we note that the matrix LL is of rank Npar − d = Nκ − Ngrp,
and hence d = Ngrp + 1.

Therefore, using equations (36) and (48)–(50) for the maximum
penalized likelihood problem in Section 2.3, we have the following
formulae for the relevant information criteria from Section 3.3:

GICP(λ) = χ2 +
∑

ij

ln
(
σ 2

ij

) + 2Ndat

Nκ+1∑
q=1

Nκ+1∑
q ′=1

× (
[I(α̂P)]qq ′ − λ2 �q �q ′

)
[H−1

P ]qq ′ (51)

BICP(λ) = χ2 +
∑

ij

ln
(
σ 2

ij

) + 2
Nκ+1∑
q=1

ln gP,qq

− (Nκ − Ngrp) ln λNdat − (Ngrp + 1) ln 2π

+ λNdat

Nκ∑
q=1

α̂P,q �q − ln �+. (52)

4 K E R N E L D E S I G N A L G O R I T H M S

Let us introduce the concept of a kernel design, which we define
as a specific choice of DBFs (or, equivalently, kernel pixels) to be
employed in the modelling of the convolution kernel. From a master
set of N DBFs, the model selection criteria will each select a single
‘best’ kernel design, which requires the evaluation of the criteria
via the estimation of the model image parameters for each of the 2N

possible kernel designs.5 This computational problem is formidable
and currently infeasible for values of N that are required for typical
kernel models (e.g. a relatively small 9×9 kernel pixel grid yields
∼2.4 × 1024 potential kernel designs!). Furthermore, branch-and-
bound algorithms (e.g. Furnival & Wilson 1974) for speeding up

5 This number includes the kernel design with zero DBFs, i.e. a model image
with the differential background as the only parameter.
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Table 1. The number of DBFs in a circular kernel design for different
ranges of the kernel radius rκ . The ranges are defined by rκ ,lo ≤ rκ < rκ ,hi.
The table may be extended as appropriate for larger values of rκ .

rκ ,lo (pix) rκ ,hi (pix) Nκ rκ ,lo (pix) rκ ,hi (pix) Nκ

0.000 1.000 1 4.472 5.000 69
1.000 1.414 5 5.000 5.099 81
1.414 2.000 9 5.099 5.385 89
2.000 2.236 13 5.385 5.657 97
2.236 2.829 21 5.657 5.831 101
2.829 3.000 25 5.831 6.000 109
3.000 3.162 29 6.000 6.083 113
3.162 3.606 37 6.083 6.325 121
3.606 4.000 45 6.325 6.403 129
4.000 4.123 49 6.403 6.708 137
4.123 4.243 57 6.708 7.000 145
4.243 4.472 61 – – –

this exhaustive search are only applicable to some of our model
selection criteria in Section 3.4.

It is well known that by not considering all of the possible com-
binations of predictor variables in a linear regression problem (e.g.
by using stepwise regression for variable selection), the optimal set
of predictors may be misidentified. However, in our case, we know
from the nature/purpose of the kernel (and copious amounts of prior
experience!) that the true kernel model has a peak signal at the ker-
nel coordinates corresponding to the translational offset between
the reference and target images (which is at the kernel origin when
they are properly registered) and that this signal decays away from
the peak. There may be other peaks (e.g. due to a telescope jump
in the target image), but again these also have profiles that decay
away from the peak(s). The best kernel designs are therefore gener-
ally limited to sets of DBFs in close proximity that form relatively
compact and regular shapes. Based on these observations, we have
devised two algorithms for automatic kernel design that compare
a manageable number of sensible kernel models; the circular ker-
nel design algorithm (Section 4.1) and the irregular kernel design
algorithm (Section 4.2).

4.1 The circular kernel design algorithm

One very simple way to greatly reduce the number of candidate
kernel designs that is in line with the expected kernel properties is
to restrict the kernel designs to those that correspond to a circularly
shaped pixel grid centred at the origin of the kernel pixel coordi-
nates. We therefore define a circular kernel design of radius rκ as
the set of DBFs corresponding to the kernel pixels whose centres
lie at or within rκ pixels of the kernel origin, which is taken to be at
the centre of the (r, s) = (0, 0) kernel pixel. As rκ is increased, the
circular kernel design includes progressively more DBFs leading
to a set of nested kernel designs. In Table 1, we list the number of
DBFs in a circular kernel design for a range of values of rκ .

The circular kernel design algorithm (CKDA) works for a pair
of images and an adopted model selection criterion. The algorithm
sequentially evaluates a set of nested model images. It finishes when
the current model image under consideration fails the selection
criterion, and consequently the previously considered model image
is selected. For the χ2 and F-tests, this means that the current
model image does not provide a significantly better fit than the
previous one. For the information criteria, this means that the current

model image yields a larger value of the criterion than the previous
one, where λ has already been optimized individually for each
model if appropriate. The algorithm proceeds as follows.

(i) Fit the model image with the differential background B
as the only parameter and calculate the desired model selection
criterion.

(ii) Adopt a circular kernel design of radius rκ = 0.5 pix, which
defines a kernel model with a single DBF. Fit the model image
consisting of the differential background and the kernel model, and
calculate the desired model selection criterion. If the model image
from (i) is selected, then finish.

(iii) Increment rκ until the kernel model includes a new (larger)
set of DBFs. Fit the model image consisting of the differential
background and the new kernel model, and calculate the desired
model selection criterion. If the model image from the previous
iteration is selected, then finish.

(iv) Repeat step (iii) until the algorithm terminates.

Note that the CKDA is intended to be applied to reference and
target images that are registered to within a single pixel (but without
requiring sub-pixel alignment necessitating image resampling).

Special care must be taken when using sigma-clipping during
the fitting of the model images in the CKDA. Since each model
image fit within the algorithm has the potential to clip different
sets of target-image pixel values, the calculation of the model se-
lection criterion may end up employing different sets of pixels at
each step, which leads to undesirable jumps in its value that are
unrelated to the properties of the fits. If sigma-clipping is required
due to the presence of outlier pixel values, then, to avoid this prob-
lem, it is recommended to run the CKDA to conclusion without
using sigma-clipping and to use the selected model image to iden-
tify and clip the outliers. The CKDA may then be re-run ignoring
this same set of clipped pixel values at each step, and the whole
process may be iterated more than once if necessary. This issue
with sigma-clipping applies to all kernel design algorithms, and
also whenever a fair comparison between algorithms is required
(see Section 6).

In the early phases of testing the CKDA, we ran the algorithm
past the finishing point to check that kernel designs with larger
radii than the radius of the selected design do not yield smaller
values of the information criterion, which, if this was the case,
would indicate that the algorithm is terminating too early at a local
minimum. We found that only in a relatively small proportion of the
simulations (Section 5) a slightly smaller value of the information
criterion is achieved for a kernel design with a larger radius than
the selected design (usually 2–3 steps larger in Table 1), and that
when this occurs, the values of the model performance metrics
(Section 5.2) for the two designs are very similar with no systematic
improvement for the kernel design with a larger radius. Given that
running the CKDA to larger radii comes at considerable cost in
terms of processing power, the termination criterion of the CKDA
was fixed at the first minimum of the information criterion. The
same conclusions were also found to apply to the irregular kernel
design algorithm (Section 4.2).

4.2 The irregular kernel design algorithm

Another way to limit the number of candidate kernel designs is to
‘grow’ the kernel model as a connected set of DBFs from a single
‘seed’ DBF by including one new DBF at each iteration. We call
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this the irregular kernel design algorithm (IKDA), and it works for a
pair of images and an adopted model selection criterion as follows.

(i) Fit the model image with the differential background B as the
only parameter and calculate the desired model selection criterion.

(ii) Define a master set of N DBFs by taking an appropriately
large grid of kernel pixels centred on the pixel at the kernel origin.
For each DBF in the master set, fit the model image consisting of the
differential background and a kernel model with the single DBF,
and calculate the desired model selection criterion. If the model
image from (i) is selected in all N cases, then finish. Otherwise,
accept the DBF from the master set that gives the best model image
(according to the selection criterion) as the first DBF to be included
in the kernel model (referred to as the seed DBF). Remove the seed
DBF from the master set.

(iii) Find the subset of DBFs from the master set that are adjacent
to at least one of the DBFs in the kernel model from the previous
iteration. For each candidate DBF in this subset, fit the model image
consisting of the differential background and a new kernel model
with a set of DBFs that is the union of the set of DBFs in the kernel
model from the previous iteration with the candidate DBF. If the
model image from the previous iteration is selected in all cases,
then finish. Otherwise, accept the candidate DBF that gives the best
model image as the next DBF to be included in the kernel model.
Remove the accepted candidate DBF from the master set.

(iv) Repeat step (iii) until the algorithm terminates.

Note that the IKDA may be applied to reference and target images
that are not registered to within a single pixel since step (ii) is
effectively a form of image registration. Again, special care must
be taken with the application of sigma-clipping within the IKDA
(see Section 4.1).

The IKDA may generate different sequences of DBFs during the
growth of the kernel model for different model selection criteria.
However, for the χ2 and F-statistics, the IKDA follows the same
sequence of DBFs since both statistics are maximized at each itera-
tion of the IKDA by minimizing χ2

B. For similar reasons, the IKDA
follows the same sequence of DBFs for the AICC and the BIC. In
these cases, the different model selection criteria simply terminate
the IKDA at different points in the sequence. Still, regardless of the
actual model selection criterion used, we find that the IKDA always
grows the kernel solution outwards from the selected seed DBF.

There are various alternative ways in which the kernel model may
be grown within the IKDA. We have experimented with dropping
the constraint that each new DBF must be adjacent to at least one
DBF in the previous kernel model. However, this produced similar
kernel solutions to those produced by the IKDA with the adjacency
constraint but with an extra scattering of isolated DBFs arbitrarily
far from the peak signal in the kernel. We also experimented with
relaxing the definition of ‘adjacent’ to include more nearby kernel
pixels, but the results from these versions of the IKDA are virtually
indistinguishable in terms of the model performance metrics from
the results for the IKDA described above (both for the simulated
and real data). Hence we have not considered these variations on
the IKDA any further.

Finally, we mention that the IKDA may be modified to generate
multiple seed DBFs (possibly as part of step (ii) or by generating
a new seed DBF after the algorithm terminates for the first time).
This modification would be useful for adapting to situations similar
to when the telescope has jumped during a target image exposure,
and consequently the true kernel model consists of two or more
disconnected peaks.

5 TESTI NG AU TO MATI C K ERNEL D ESIG N
A L G O R I T H M S O N SI M U L AT E D I M AG E S

The main aim of this paper is to find out which combination of
kernel design algorithm and model selection criterion consistently
selects a kernel model that provides the best performance in terms of
model error, fit quality, and photometric accuracy. The conclusions
drawn from our investigation will likely depend on the properties of
the reference and target images, and hence we must systematically
map out the performance of each method accordingly. This task is
most efficiently performed by generating and analysing simulated
images. Furthermore, with respect to model error, the performance
of each method may only be measured through the use of sim-
ulations where the true model image is known. Simulations also
provide a setting in which the noise model is precisely known since
it is used to generate the simulated data. Thus simulations allow
for the degree of under- or overfitting to be assessed accurately. For
these reasons, we have performed detailed DIA simulations for a
wide range of image properties.

5.1 Generating simulated images

We employed a Monte Carlo method for our investigation. We
adopted reasonable values for the CCD readout noise and gain of
σ 0 = 5 ADU and G = 1 e−/ADU, respectively. For each simulation,
we generated both noiseless and noisy versions of a reference and
target image pair, along with the noise maps used for generating the
noisy images, via the following procedure.

(i) The size of the reference image was set to 141 × 141 pixels.
(ii) The sky background level for the reference image Sref was

drawn from a uniform distribution on the interval [16, 1000] ADU.
(iii) The log of the field star density, parametrized as the number

of stars per 100 × 100 pixel image region, was drawn from a
uniform distribution on the interval [0, 3], and this density was used
to calculate the number of stars Nstar to be generated in the reference
image.

(iv) The pixel coordinates of each star in the reference image
were drawn from a uniform distribution over the image area. Also,
for each star, the value ofF−3/2, whereF is the star flux (ADU), was
drawn from a uniform distribution on the interval [10−9, 10−9/2].
This flux distribution is appropriate when imaging to a fixed depth
through a uniform space density of stars (e.g. a good approximation
for certain volumes in our Galaxy). For the purposes of performing
PSF photometry on the difference image, and without loss of gen-
erality, the pixel coordinates of the brightest star were modified by
an integer pixel shift to lie within the central pixel of the reference
image.

(v) The same normalized two-dimensional Gaussian profile of
full-width at half-maximum (FWHM) fref pixels was adopted for
the profile of each star in the reference image. The value of fref

was drawn from a uniform distribution on the interval [1, 6] pix,
adequately covering the under- to oversampled regimes.

(vi) A square image pixel array Rnoiseless of size 141 × 141 pixels
was created with all of the pixel values set to the sky background
level Sref.

(vii) For each star in the reference image, the Gaussian profile
was centred at the star pixel coordinates and sampled at 7 times the
image resolution over the image area. The oversampled Gaussian
profile was then binned (by averaging) to match the image resolution
and renormalized to a sum of unity. Finally, it was scaled by the star
flux and added to the image Rnoiseless.
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(viii) An image of standard deviations σ in, ref (i.e. a noise map)
corresponding to Rnoiseless was created via

σin,ref,ij =
√

σ 2
0 + Rnoiseless,ij /G (53)

which may be derived from equation (13) by setting the Fij = 1.
A 141 × 141 pixel image W of values drawn from a Gaussian
distribution with zero mean and unit standard deviation was also
generated and used to construct a noisy reference image Rnoisy via

Rnoisy,ij = Rnoiseless,ij + Wij σin,ref,ij . (54)

(ix) The size of the target image was set to 141 × 141 pixels.
(x) For simplicity, the sky background level for the target image

Star was set to Sref, which is equivalent to assuming a differential
background of zero.

(xi) A single sub-pixel shift in each of the x and y image co-
ordinate directions was drawn from a uniform distribution on the
interval [−0.5, 0.5] pix and applied to the pixel coordinates of the
stars in the reference image to generate the coordinates of the same
stars in the target image. The fluxes of the stars in the target im-
age were assumed to be the same as their fluxes in the reference
image, which is equivalent to assuming non-variable stars and a
photometric scale factor of unity.

(xii) The convolution kernel matching the PSF between the ref-
erence and target images was assumed to be a normalized two-
dimensional Gaussian profile of FWHM |fker| pixels, where a non-
negative or negative value of fker indicates that the kernel convolves
the reference or target image PSF, respectively. The value of fker

was drawn from a uniform distribution on the interval [−1, 5] pix
and the FWHM ftar of the Gaussian profile for the stars in the target
image was then calculated from

f 2
tar =

{
f 2

ref + f 2
ker for fker ≥ 0

f 2
ref − f 2

ker for fker < 0.
(55)

(xiii) A square image pixel array Inoiseless of size 141 × 141 pixels
was created with all of the pixel values set to the sky background
level Star.

(xiv) The flux profiles of the stars in the target image were added
to Inoiseless using the same method as that used in step (vii) for the
reference image.

(xv) An image of standard deviations σ in, tar corresponding to
Inoiseless was created via

σin,tar,ij =
√

σ 2
0 + Inoiseless,ij /G. (56)

A new 141 × 141 pixel image W of values drawn from a Gaussian
distribution with zero mean and unit standard deviation was also
generated and used to construct a noisy target image Inoisy via

Inoisy,ij = Inoiseless,ij + Wij σin,tar,ij . (57)

(xvi) The images Inoiseless, Inoisy, and σ in, tar were each trimmed to
a size of 101 × 101 pixels. Hence the number of data values in each
simulation is Ndat = 10201.

(xvii) The signal-to-noise (S/N) ratio of the noisy target image
SNtar was calculated as

SNtar =
∑

ij (Inoiseless,ij − Star)√∑
ij σ 2

in,tar,ij

. (58)

The value of log(SNtar) is distributed approximately uniformly due
to the way the field star density is generated in step (iii). It is
important to note that it does not necessarily follow that a high S/N
target image has a bright high-S/N star in the centre. The high S/N

in the target image may be the consequence of the presence of a
reasonable number of faint stars. In this case, the star at the centre
of the image is of low S/N, even though it is the brightest star in the
image.

In total, we generated the reference and target images for 548 392
simulations. We call this set of images ‘Simulation set S1’.

The above method for generating reference and target images
represents the case where the reference image has approximately
the same S/N ratio as the target image. However, it is common prac-
tice in DIA to create a high-S/N ratio reference image by stacking
images or integrating longer. We therefore also repeated the whole
procedure of generating simulated images for reference images with
10 times less variance in each pixel value than the corresponding
target images (or ∼3.16 times better S/N). This was achieved by
scaling the σ in, ref, ij in step (viii) by 10−1/2 ∼ 0.316. This second set
of reference and target images, ‘Simulation set S10’, was generated
for a total of 529 571 simulations. Fig. 1 shows an example noisy
reference and target image pair from one of these simulations.

5.2 Model performance metrics

We used the following metrics to measure the quality of each kernel
and differential background solution.

(i) Model error. The mean squared error (MSE) measures how
well the fitted model image M matches the true model image Inoiseless.
It is defined by

MSE = 1

Ndat

∑
ij

(Mij − Inoiseless,ij )2. (59)

Kernel and differential background solutions with the smallest val-
ues of MSE exhibit the best performance in terms of model error.

We also consider the photometric scale factor P and the differen-
tial background B as supplementary measures of model error. For
our simulations, the closer to unity the value of P and the closer to
zero the value of B, the better the performance of a kernel and differ-
ential background solution with respect to model error. Systematic
errors in the photometric scale factor are especially important since
a fractional error EP in P introduces a fractional error of EP into the
photometry (Bramich et al. 2015).

(ii) Fit quality. The bias and excess variance in the fitted model
image may be measured by the following statistics

MFB = 1

Ndat

∑
ij

(Inoisy,ij − Mij )

σin,tar,ij
(60)

MFV = 1

Ndat − 1

∑
ij

(
(Inoisy,ij − Mij )

σin,tar,ij
− MFB

)2

. (61)

MFB is the mean fit bias and MFV is the mean fit variance with units
of sigma and sigma-squared, respectively. The closer to zero the
value of MFB, and the closer to unity the value of MFV, the better
the performance of a kernel and differential background solution
with respect to fit quality.

(iii) Photometric accuracy. To assess the photometric accuracy,
we perform PSF fitting on the difference image at the position of
the brightest star in the reference image under the assumption that
the reference image PSF is perfectly known. In detail, we generate a
normalized two-dimensional Gaussian profile of FWHM fref pixels
centred at the pixel coordinates of the brightest star in the reference
image (guaranteed by construction to be within half a pixel of the
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Figure 1. A reference and target image pair from simulation set S10 are shown at the top. The corresponding results for each of the 19 kernel solution methods
are shown below. For each method, the difference image, kernel solution, and model performance metrics are displayed. The difference images and kernels are
all displayed using the same linear scales of [−15, 15] ADU and [−0.14, 0.14], respectively. Processing times were measured for non-optimized code running
on a desktop computer with an Intel Core i7-2600 CPU (3.40 GHz) and 16 Gb RAM.
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image centre) and sampled at 7 times the image resolution. The
oversampled Gaussian is then binned (by averaging) to match the
image resolution, convolved with the kernel solution, trimmed in
extent to a circularly shaped pixel grid of radius 2ftar� pixels around
the star coordinates, and renormalized. This model PSF for the target
image is then optimally scaled to the difference image at the position
of the brightest star by simultaneously fitting a scaling factor Fdiff

and an additive constant, and using the known pixel variances in the
target image σ 2

in,tar. The difference flux Fmeas of the brightest star
on the photometric scale of the reference image is then computed
using Fmeas = Fdiff/P .
The theoretical minimum variance σ 2

min in the difference flux Fmeas

for PSF fitting with a scaling factor only is given by

σ 2
min = 1

P 2
true

⎛⎝∑
ij

P2
tar,ij

σ 2
in,tar,ij

⎞⎠−1

, (62)

where Ptrue is the true photometric scale factor (Ptrue = 1 in our sim-
ulations) and Ptar is the true PSF for the brightest star in the target
image (a normalized two-dimensional Gaussian profile of FWHM
ftar pixels in our simulations). Since all of the stars in the simula-
tions are non-variable, the best kernel and differential background
solutions should yield a distribution of values of Fmeas/σmin with
zero mean and unit variance. Hence, for a set of Nset simulations
indexed by k, appropriate measures for assessing the photometric
accuracy are:

MPB = 1

Nset

∑
k

Fmeas,k

σmin,k

(63)

MPV = 1

Nset − 1

∑
k

(Fmeas,k

σmin,k

− MPB

)2

. (64)

MPB is the mean photometric bias and MPV is the mean photo-
metric variance with units of σ min and σ 2

min, respectively. We note
that even though MPV is normalized by the theoretical minimum
variance in the difference flux, it may still achieve values that are
less than unity when the target image is overfit and/or when the
model PSF for the target image differs from the true PSF.

5.3 Results

For each possible combination of kernel design algorithm and model
selection criterion, we computed kernel and differential background
solutions for all of the reference and target image pairs in both of the
simulation sets S1 and S10. Furthermore, for comparison purposes,
for each simulation we solved for a model image employing a square

19×19-pixel kernel design which corresponds to the unregularized
kernel analysed in Be12. We also solved for the same 19×19-pixel
kernel design with regularized DBFs where the optimal choice of λ

was determined using either GICP(λ) or BICP(λ) (equations 51 and
52) which corresponds to the regularized kernel analysed in Be12.
In all cases, we used three iterations for each solution, but without
employing sigma-clipping since the simulated images do not suffer
from outlier pixel values (see Section 2.1). The optimization of λ for
the GICP and BICP model selection criteria was performed using a
binary search algorithm in log (λ) for the range −3 ≤ log (λ) ≤ 3
with a final resolution in λ of 15 per cent, while also considering the
limit λ = 0. Finally, the corresponding model performance metrics
from Section 5.2 were calculated for each solution.

Hereafter we use a string of the form
<ALGORITHM>-<CRITERION> to refer to a specific combi-

nation of kernel design algorithm (CKDA or IKDA) and model se-
lection criterion (χ2, F, AICC, TIC, GICP, BIC, BICI or BICP). For
the 19×19-pixel kernel design, we use 19×19-UNREG, 19×19-
GICP, and 19×19-BICP. Each of these combinations constitutes a
kernel solution method, and hence we have 19 methods to consider.

In Fig. 1, we show the difference images, kernel solutions, and
model performance metrics for each of the 19 kernel solution meth-
ods applied to the reference and target image pair displayed at the
top (taken from simulation set S10). The target image is of medium
S/N, and the reference and target images are both oversampled
(with fker > 2.35 pix). Notice how the regularization in the 19×19-
GICP and 19×19-BICP methods drastically reduces the noise in the
kernel compared to the 19×19-UNREG method as demonstrated
previously in Be12. Notice also how, as expected, the BIC-type cri-
teria (BIC, BICI, and BICP) select kernel designs with fewer DBFs
than the kernel designs selected by the AIC-type criteria (AICC,
TIC, and GICP). Somewhat surprising is the ‘spidery’ form of the
kernel solutions generated by the IKDA. A selection of model PSFs
for this target image, used to perform PSF fitting on the difference
images, are displayed in the top row of Fig. 2 alongside the true
PSF for the brightest star. The residuals of these model PSFs from
the true PSF (bottom row) demonstrate that the spidery form of the
IKDA kernel solutions has no discernable detrimental effect, when
compared to the other kernel solutions, on the convolution of the
reference image PSF to obtain the target image PSF.

To provide an idea of what the functional forms of GICP(λ) and
BICP(λ) look like, we plot these quantities as a function of λ for
two example simulations in Fig. 3. Each plot shows the curves
for the CKDA-GICP, CKDA-BICP, 19×19-GICP and 19×19-BICP

methods. Clear minima exist indicating the optimal values of λ.
All of the simulations yield similar functional forms for GICP(λ)
and BICP(λ), and while the minima of the GICP(λ) curves may

Figure 2. The true PSF for the brightest star in the target image from Fig. 1 is shown at the top left. The true PSF is a normalized two-dimensional Gaussian of
FWHM 4.78 pix centred in the image stamp using the sub-pixel coordinates of the brightest star. A selection of six model PSFs for the target image are shown
in the top row and labelled with the corresponding kernel solution methods. The residuals of these model PSFs from the true PSF are shown in the bottom row.
Each row of plots uses the linear scale reproduced at the right-hand end of the row.
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Figure 3. Examples from the simulations of the variation of the GICP and
BICP criteria as a function of λ for the kernel solution methods CKDA-GICP

(black), CKDA-BICP (red), 19x19-GICP (green), and 19×19-BICP (blue).
For the CKDA-GICP and CKDA-BICP methods, the curves correspond to
the selected kernel radius. For each curve, the minimum is marked with a
filled circle. For the CKDA-GICP and 19×19-GICP methods, the value of
the curve at λ = 0 is marked on the left-hand side of the plot with a triangle.
Note that while GICP(λ) converges to TIC for λ → 0, BICP(λ) diverges
as λ → 0 because of the divergence of the term involving ln λ in equation
(52). Hence no triangles are plotted for the CKDA-BICP and 19×19-BICP

methods.

sometimes lie at λ = 0, they very rarely lie at values of λ that are
greater than 10 for GICP, or that are greater than 100 for BICP.
Note that for the example shown in Fig. 3(b), the optimal value of
λ for each method lies in the range 0.1–1.0 which matches with the
recommendation for λ from Be12. However, for the other example
shown in Fig. 3(a), the GICP and BICP criteria yield optimal values
of λ that are <0.1 and >1.0, respectively.

In Fig. 4, for each kernel solution method we plot the median
MSE, P, MFB, and MFV values, and the MPB and MPV measures,
for a subset of our simulations corresponding to oversampled ref-
erence images (fref ≥ 2.35 pix) and kernels with fker ≥ 2.35 pix.
The corresponding plots for B are not presented because the re-
sults are very similar to those for P since the photometric scale
factor and differential background are correlated. We have further
split the simulations into subsets based on target-image S/N (low:
8–40, medium: 40–200, high: 200–1000; three columns of plots)
and reference image S/N (simulation sets S1 and S10; square or
circular symbols). Similar style figures representing the results for

different subsets of simulations chosen based on image sampling
are presented in Appendix B (Figs B1–B4).

Within each subset of simulations, the distributions of the vari-
ous model performance metrics are single-peaked bell-shapes with
rapidly falling wings and they are not far-off being Gaussian in
some cases. Skewness affects some of the distributions as do a few
outlier points. However, for each simulation subset and model per-
formance metric, the shape and width of the distributions are very
similar between the kernel solution methods. The differences in the
distributions lie in their central values. Consequently, we have used
the median of the model performance metrics MSE, P, MFB, and
MFV in Figs 4 and B1–B4 to compare the kernel solution methods
since the median is a robust estimator of the central value. Given the
Gaussian-like shape of the distributions of Fmeas/σmin, our choice
of measures MPB and MPV (equations 63 and 64) for assessing the
photometric accuracy is justified.

The processing time to run the IKDA-GICP and IKDA-BICP

methods is prohibitive (see the timings noted in Fig. 1). Hence
we only ran these kernel solution methods on 25 410 and 25 320
reference and target image pairs from simulation sets S1 and S10,
respectively. The results from these methods are plotted in Figs 4
and B1–B4, although they suffer from more noise than the other
methods because they are derived from many fewer simulations.
Consequently, we do not consider these two kernel solution methods
any further.

5.4 Discussion

Unless otherwise stated, the discussion in this section refers to the
results plotted in all of the Figs 4 and B1–B4, while Fig. 4 alone is
sufficient to demonstrate the points raised.

In preparation for our discussion, it is worth considering how
closely the candidate model images generated by our kernel de-
sign algorithms are able represent the true underlying model image.
In each simulation, the Gaussian PSF profile in the reference (or
target) image is convolved with a Gaussian kernel to obtain a Gaus-
sian PSF profile in the target (or reference) image. In the limits of a
noiseless reference image with infinitely fine image sampling, and
for a kernel that convolves the reference image, a kernel of DBFs
of infinite extent is sufficient to allow for a full representation of
the true underlying model image (i.e. the noiseless target image). In
practice, the reference image is noisy, the reference and target im-
ages are sampled at a finite scale with a spatial offset between them,
the target image may be sharper than the reference image, and the
kernel model employs a finite number of DBFs. It is clear therefore
that none of the candidate model images will actually represent the
true model image. However, for reference images with higher S/N
and better sampling, and for kernel models employing more DBFs
(without overfitting), the candidate model images will include mod-
els that are closer to the true model. Referring back to Section 3.2,
it seems then that the model selection criteria derived considering
the Kullback–Leibler divergence (i.e. the AIC-type criteria) should
perform the best for DIA (especially in terms of model error), and
that all of the criteria should perform better with improved reference
image S/N and sampling.

Unsurprisingly then, the first major conclusion that can be drawn
from the results of the simulations is that with very few exceptions
it is vastly advantageous, as demonstrated by all of the model per-
formance metrics, to use a reference image with a higher S/N than
the target image regardless of the target-image S/N, the reference or
target image FWHM, or the kernel solution method employed. Our
discussion will therefore focus on the results for simulation set S10.
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554 D. M. Bramich et al.

Figure 4. Plots of the median MSE, P, MFB, and MFV values (equations 59, 12, 60, and 61), and the MPB and MPV measures (equations 63 and 64), for
each kernel solution method for fref ≥ 2.35 pix and fker ≥ 2.35 pix. The results in each plot have been calculated from ∼60 000 simulations for each of the
simulation sets S1 and S10. Layout: the three columns of plots correspond to low (8–40), medium (40–200) and high (200–1000) S/N target images. Each row
of plots corresponds to a different model performance metric. Individual plots: square and circular symbols represent the results for simulation sets S1 and
S10, respectively. Red, green, and blue colours correspond to the kernel design algorithms CKDA, IKDA, and 19×19, respectively. For each algorithm, the
kernel solution method with the best value of the relevant model performance metric is also plotted with an open black symbol. The method with the overall
best metric value is plotted with a filled black symbol. The IKDA-GICP and IKDA-BICP methods are excluded when determining the best metric values since
their results are noisier having been determined from many fewer simulations, and because they are too computationally intensive to be of practical use with
currently available computing equipment.
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Furthermore, the best estimates for the photometric scale factor are
achieved for higher S/N target images, and that in general P is un-
derestimated. Since an accurate estimate of the photometric scale
factor is crucial for performing accurate photometry (Bramich et al.
2015), our discussion will further focus on the results for target-
image S/N ranges of 40–200 and 200–1000 where P is estimated to
better than 1 per cent for simulation set S10.

We observe that the smallest median MSE values for simulation
set S10 are always achieved by a kernel solution method employing
an AIC-type criterion. What differs between the S/N and FWHM
regimes is which algorithm combined with an AIC-type criterion
performs the best in terms of model error. This result validates
our discussion at the beginning of this section about the fact that
the set of candidate model images generated by our kernel design
algorithms does not include the true underlying model.

We find that the median MFB values, which have units of sigma,
are very small negative numbers with absolute values less than
∼3 × 10−3σ min (simulation set S10). Hence in terms of fit quality,
we give more weight to the results for the MFV metric.

The results for the photometric accuracy in Fig. 4 reveal the
surprising fact that the variance in the photometry of the brightest
star for simulation set S10 is smaller than the theoretical minimum
σ 2

min. This can also be seen in Figs B2–B4. We have investigated
how this might be possible. First, we checked the photometry of
the faintest star in each simulation. We did this by modifying step
(iv) of the image simulation procedure in Section 5.1 to shift the
pixel coordinates of the faintest star (instead of the brightest) to lie
within the central pixel of the reference image. We then generated
60 000 reference and target image pairs with the σ in, ref, ij in step
(viii) scaled by 10−1/2 ∼ 0.316 as was done for simulation set S10,
and for each simulated image pair, we computed Fmeas/σmin for
the faintest star for each kernel solution method. We found that
the MPV measures for the faintest star are greater than unity with
values in the range ∼1.1–1.6 σ 2

min for Figs 4 and B2–B4. Hence the
variance in the photometry of the faintest stars does not achieve the
theoretical minimum σ 2

min.
We believe that these facts may be explained by considering that

all of the kernel solution methods are overfitting the brightest star(s)
and underfitting the faintest star(s) in most of our simulations. Care-
ful inspection of the difference images in Fig. 1 reveals that the pixel
noise in the area around the brightest star is suppressed,6 and one
can see that this effect is visible to various extents for all of the
kernel solution methods including the methods employing regu-
larization. Furthermore, the noise suppression around the brightest
star is clearly visible in figs 2 and 3 of Be12. We experimented
with using a noise model in our simulations with equal pixel vari-
ances calculated using the sky background level only. In this case,
the target-image pixel values for the brightest star are given even
more weight relative to the other pixels when solving for the kernel
and differential background, and the MPV measures for the bright-
est star are found to be even smaller. However, if we increase the
size of the images in our simulations, the MPV measures that are
smaller than unity in Figs 4 and B2–B4 are found to increase to val-
ues that are closer to unity. The same effect may also be achieved
by considering only those simulations with higher star densities.

From this we may conclude that the kernel solution methods
which yield MPV measures that are closest to unity, regardless of
whether they are greater than or less than unity, are those that achieve

6 The effect is more easily discernable on a digital display than on a printed
copy.

the best balance between under- or overfitting the target image
for the brightest stars. Consequently, it is these methods that produce
the most reliable photometry whenever the corresponding MPB
measures are also closest to zero. Also, it is clear that in practice the
image regions used to derive the kernel solutions should be as large
as possible while satisfying the assumption of a spatially invariant
kernel, and that ideally they should each contain at least a few bright
objects. This helps to avoid the situation where a single bright object
dominates the kernel solution in each region.

Based on the above general observations and discussion, we have
attempted a detailed analysis of the results presented in Figs 4 and
B1–B4. However, it has proven impossible to identify any single
kernel solution method, or even an individual algorithm or criterion,
that consistently performs the best for all of the model performance
metrics. Even breaking the analysis down into each of the five image
sampling regimes does not help much. Since we are unable to reach
a clear conclusion from the way the results have been analysed and
presented so far, further investigation is required.

Finally, we checked how well the kernel solutions recover the
input sub-pixel shifts between the reference and target images. To
do this, we computed the centroid of each kernel solution and com-
pared the centroid coordinates to the appropriate sub-pixel shifts.
Reassuringly, we find that the residuals are scattered around zero
with decreasing scatter for higher S/N target images. Furthermore,
we note that while all of the CKDA and IKDA methods perform
equally well in recovering the shifts (e.g. ∼0.015 pix rms at SNtar ∼
300), the 19×19-UNREG, 19×19-GICP, and 19×19-BICP meth-
ods all perform considerably worse in this respect (e.g. ∼0.043 pix
rms at SNtar ∼ 300).

5.5 Further investigation

One of the most important applications of DIA is for precision
photometry. Therefore, we are highly motivated in developing a
kernel solution method that provides the best possible photometry
in the sense that the chosen method should deliver the smallest
photometric bias while also striking the optimal balance between
under- and overfitting. In photometric applications, DIA is typically
used to obtain photometry for the objects in a set of time series
images. The properties of these images, such as the PSF FWHM
and S/N, will likely vary substantially during the course of the
observations (e.g. due to the atmosphere). Therefore, a further aspect
on which we may assess the kernel solution methods studied in this
paper is on the uniformity of the photometric bias and variance as
a function of FWHM and S/N.

In Fig. 5, for each kernel solution method and target-image S/N
regime, we plot surfaces representing the MPB measure for simula-
tion set S10 as a function of the reference image and kernel FWHM.
A circular smoothing region of radius 0.33 pix, which encompasses
the results from ∼2000 simulations, is used to calculate the MPB
surface values. Blue and red colours in the plot panels indicate posi-
tive and negative mean photometric biases, respectively, while white
indicates zero bias. The image sampling regimes corresponding to
Figs 4 and B1–B4 are delimited in each plot by continuous black
lines. These plots are complimentary to those in Figs 4 and B1–B4
in the sense that they reveal considerably more detail about the de-
pendence of the MPB measure on image sampling, even though it
is more difficult to assess the exact MPB values in each case.

Since the DIA photometry for a set of time series images is ex-
tracted using a single reference image, the uniformity of the MPB
surfaces in Fig. 5 should be assessed via horizontal cuts (i.e. at
fixed fref), and by comparing the cuts between the plot columns
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556 D. M. Bramich et al.

Figure 5. Plots of surfaces representing the MPB measure (equation 63) for simulation set S10 as a function of the reference image and kernel FWHM. Each
plot corresponds to a specific kernel solution method (labelled on the right-hand side of each row of three plots) and target-image S/N regime (labelled at the
top of each column of plots). The colour-intensity bar corresponding to each column of plots is reproduced at the bottom of the figure. In each plot, the surface
values are calculated using a circular smoothing region of radius 0.33 pix and the image sampling regimes corresponding to Figs 4 and B1–B4 are delimited
by continuous black lines. Specifically, the curved line corresponds to a critically sampled target image for an undersampled reference image (i.e. ftar = 2.35
and fref ≤ 2.35 pix).
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(for S/N dependence). Immediately it is clear to the eye that the
IKDA-AICC, IKDA-TIC, 19×19-UNREG and 19×19-GICP meth-
ods produce by far the most uniform and least biased MPB surfaces
in the S/N>40 regime with the IKDA-AICC and IKDA-TIC meth-
ods yielding nearly identical results. Specifically, in the oversampled
reference image regime and for S/N>200, each of these four meth-
ods suffers from only a small photometric bias (MPB ∼± 0.1 σ min),
with the two IKDA methods showing both positive and negative
biases, and the two 19×19-pixel kernel designs showing just a
positive bias. Between S/N regimes, the IKDA-AICC, IKDA-TIC,
and 19×19-UNREG methods are relatively uniform whereas the
19×19-GICP method exhibits more noticeable non-uniformity. In
the undersampled reference image regime with oversampled target
images, the IKDA-AICC, IKDA-TIC, and 19×19-UNREG methods
produce very similar uniform MPB surfaces with a slight positive
bias of ∼0.1σ min, while the 19×19-GICP method shows significant
non-uniformity. In the undersampled reference and target image
regime, the MPB surfaces for all 17 kernel solution methods have
large gradients indicating that the time series photometry will suffer
from large systematic variations whenever there are small variations
in fker between the images (unsurprisingly). For S/N>200, the four
kernel solution methods identified here provide uniform MPB sur-
faces down to fref ∼ 2.1 and ftar ∼ 2.1 pix (slightly below critical
sampling).

The surfaces representing the MPV measure for simulation set
S10 as a function of the reference image and kernel FWHM, cre-
ated in the same fashion as the MPB surfaces, are displayed in
Fig. 6. They clearly show that all of the kernel solution methods
yield an MPV that is smaller than the theoretical minimum σ 2

min
(except in the undersampled reference and target image regime).
In Section 5.4, we came to the conclusion that this is because the
kernel solution methods are overfitting the brightest star(s). The
19×19-UNREG method is the worst performer in this respect, fol-
lowed closely by 19×19-GICP and then 19×19-BICP. Otherwise,
the MPV surfaces for the CKDA and IKDA are all very simi-
lar with the IKDA providing more uniform photometric variance
near the locus of critically sampled target images. The MPV sur-
faces for the IKDA-AICC and IKDA-TIC methods are virtually
indistinguishable.

Hence, we may conclude that the IKDA-AICC and IKDA-TIC
methods are equally the best kernel solution methods in terms of the
photometry that they yield, with the 19×19-GICP method coming
in as a close second best. The plots of the equivalent surfaces for
the remaining model performance metrics for simulation set S10,
reproduced in Appendix C, also support this conclusion. Briefly,
Fig. C1 clearly demonstrates the very poor performance of the
19×19-UNREG method in terms of model error. The uniformity
and accuracy of the estimated photometric scale factor as a func-
tion of FWHM and S/N is also important for obtaining time series
photometry that is free from systematic errors, and the best meth-
ods in this respect are 19×19-UNREG and 19×19-GICP, followed
closely by IKDA-AICC, IKDA-TIC, and 19×19-BICP (Fig. C2). In
fact, the MPB surfaces (Fig. 5) show considerable correlation with
the P surfaces, which further highlights the importance of obtaining
a precise and unbiased estimate of the photometric scale factor in
order to obtain precise and unbiased photometry (Bramich et al.
2015). For the MFB surfaces (Fig. C3), which also correlate some-
what with the MPB surfaces, the most uniform and least biased
methods are 19×19-UNREG and 19×19-GICP, followed closely
by IKDA-AICC, IKDA-TIC, and 19×19-BICP. The MFV surfaces
in Fig. C4 further demonstrate the target-image overfitting by the
19×19-UNREG and 19×19-GICP methods.

Finally, we highlight the fact that all 19 of the kernel solu-
tion methods that we have tested show complicated (and different)
functional dependences of the model performance metrics on PSF
FWHM and S/N in each of the reference and target images. This has
made it far more difficult to identify the best performing methods
than was originally anticipated.

5.6 Optimal values of λ

Be12 recommend values of λ between 0.1 and 1 for regularized
19 × 19-pixel kernels although they caution that the optimal value
will be PSF FWHM and S/N dependent. Four of the kernel solution
methods that we have tested employ regularized DBFs (CKDA-
GICP, CKDA-BICP, 19×19-GICP, and 19×19-BICP) where the op-
timal value of lambda is selected using either the GICP or BICP

criteria. In Fig. 7, for each of these four kernel solution methods,
and for each target-image S/N regime, we plot surfaces representing
the log of the median λ values for both simulation sets S1 (left-hand
side) and S10 (right-hand side) as a function of the reference image
and kernel FWHM. A circular smoothing region of radius 0.33 pix,
which encompasses the results from ∼2000 simulations, is used to
calculate the log (λ) surface values.

These surfaces clearly show that the optimal value of λ, when
selected by either the GICP or BICP criteria, is highly correlated with
the PSF FWHM and S/N in each of the reference and target images,
and that it is further dependent on the kernel design algorithm
employed (i.e. each plot panel in Fig. 7 shows a different non-
uniform surface). The BICP criterion selects values of λ that are
greater than those selected by the GICP criterion (i.e. the BICP

criterion favours stronger kernel regularization), and the GICP or
BICP criteria rarely select values of λ that are greater than 10 or
100, respectively. The general trends for λ are that higher S/N
reference images require weaker kernel regularization, higher S/N
target images require weaker regularization for fker < 2.35 pix but
stronger regularization for fker > 2.35 pix, and the larger the values
of fref and fker, the stronger the required regularization. We conclude
that the optimal regularization of the kernel for any particular kernel
solution method is highly data set dependent and that it should be
determined independently for each target image. We caution that the
optimal value of λ, at least according to the GICP or BICP criteria,
may lie in a very large range 0 ≤ λ ≤ 100–1000.

5.7 IKDA: number of DBFs

In Section 5.5, we concluded that the IKDA-AICC and IKDA-TIC
methods are equally the best kernel solution methods in terms of
photometric accuracy. Therefore we are interested in the properties
of the kernel designs that they generate, one of which is the number
of DBFs Nκ that are selected. In Fig. 8, for each of these two kernel
solution methods, and for each target-image S/N regime, we plot
surfaces representing the median Nκ values for both simulation sets
S1 (left-hand side) and S10 (right-hand side) as a function of the
reference image and kernel FWHM. As usual, a circular smoothing
region of radius 0.33 pix is used to calculate the Nκ surface values.

These surfaces show a reasonably complicated dependence on
PSF FWHM and S/N in each of the reference and target images,
although they are very similar between the two kernel solution
methods. The general trends for Nκ are that higher S/N reference
images require less DBFs, higher S/N target images show larger
variations in Nκ as a function of fref and fker, and that all of the
surfaces show a minimum trough of approximately the same shape
at a similar position. Similar to λ, we find that the number of
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Figure 6. Plots of surfaces representing the MPV measure (equation 64) for simulation set S10 as a function of the reference image and kernel FWHM. The
format of the figure is the same as in Fig. 5.

MNRAS 457, 542–574 (2016)

 at Q
atar Foundation for E

ducation, Science and C
om

m
un on February 1, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
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Figure 7. Plots of surfaces representing the log of the median λ values for simulation sets S1 (left-hand side) and S10 (right-hand side) as a function of the
reference image and kernel FWHM. Each plot corresponds to a specific kernel solution method (labelled on the right-hand side of each row of three plots) and
target-image S/N regime (labelled at the top of each column of plots). Otherwise, the format of the figure is the same as in Fig. 5.

Figure 8. Plots of surfaces representing the median number of selected DBFs for simulation sets S1 (left-hand side) and S10 (right-hand side) as a function of
the reference image and kernel FWHM. Each plot corresponds to a specific kernel solution method (labelled on the right-hand side of each row of three plots)
and target-image S/N regime (labelled at the top of each column of plots). Otherwise, the format of the figure is the same as in Fig. 5.
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selected DBFs is highly data set dependent and varies over a large
range (10 � Nκ � 150).

6 A PPLICATION TO R EAL IMAGES

So far we have employed simulated image data to explore the per-
formance of the proposed kernel solution methods for a wide range
of reference and target image properties, and we have identified
the best performing methods in terms of the photometry that they
yield (IKDA-AICC, IKDA-TIC, and 19×19-GICP). However, the
task remains to test the kernel solution methods on real image data
to check the validity of the conclusions from the simulations. While
it is not possible to cover the full range of reference and target image
properties using real data in the same systematic and uniform way
as it is possible to do with the simulations, we may certainly use real
data to validate the results of the simulations for the small ranges of
image properties that they cover. For this purpose, we will use two
independent data sets.

6.1 Time-series observations of the open cluster NGC 7789

6.1.1 Data and reductions

The first data set comes from a transit survey of the open cluster
NGC 7789 (Bramich et al. 2005). The data were observed using
the Wide Field Camera on the 2.5-m Isaac Newton Telescope (INT)
of the Observatorio del Roque de los Muchachos, La Palma, Ca-
nary Islands. We selected the data from chip 2 (2048 × 4096 pix;
0.33 arcsec pix−1) for the 11 nights of observations taken between
2000 September 10 and 20. The exposure time was 300 s for each
of the 691 selected images, and each image covers the same field
in NGC 7789. The images had already been calibrated (i.e. bias
subtraction and flat-fielding), and the readout noise and gain deter-
mined as σ 0 = 3.1 ADU and G = 1.44 e−/ADU, in the work of
Bramich et al. (2005).

We used the DanDIA7 pipeline (Bramich et al. 2011) to create a
high-S/N stacked reference image and an associated star list. First,
stars were detected on, and matched between, the 13 best-seeing
images (observed during an ∼2.8 h window on the 2000 September
10). Using the matching stars, a set of linear transformations were
derived between the images, and each image was registered to the
pixel grid of the first image using cubic O-MOMS resampling (Blu,
Thévenaz & Unser 2001). The stacked reference image was then
created by summing the registered images and dividing by 13. The
PSF FWHM of the reference image was measured to be fref ∼3.44
pix.

Secondly, we measured the fluxes and positions of the stars in
the reference image by extracting a spatially variable empirical PSF
with polynomial degree 3 from the image and fitting this PSF to each
detected object. Deblending of very close objects was attempted.
From this analysis, we derived a list of 7604 stars with known fluxes
and positions in the reference image.

6.1.2 Applying the kernel solution methods

We measured the PSF FWHM ftar of each image and retained only
those 587 images such that −1 < fker < 5 (see equation 55) in
order to match the range for fker employed in our simulations. We

7 DanDIA is built from the DanIDL library of IDL routines available at
http://www.danidl.co.uk.

then selected 250 random stars from the reference image star list
avoiding stars within 200 pixels of the image edges. The selected
stars are approximately uniformly distributed across the image area
and cover the range of brightest to faintest detected stars. For each
star, we cut a 141 × 141 pixel region from the (parent) reference
image, and a 101 × 101 pixel region from each of the 587 (parent)
target images in the time series, such that the star in question lies at
the centre of each region. This effectively registers each target image
region with the relevant reference image region to the nearest integer
pixel without performing image resampling. This process yielded
146 750 reference and target image pairs (along with associated bad
pixel masks from the data reduction).

The S/N for each target image region was calculated as follows.
The target-image pixel values were used in place of the Mij in
equation (13) and the σ ij were calculated using the known readout
noise, gain, and flat-field image from the data reduction. We then
calculated SNtar from equation (58) using the target-image pixel
values in place of the Inoiseless, ij, the previously computed σ ij values
in place of the σ in, tar, ij, and the estimate of the local sky background
level from the data reduction in place of Star.

To flag any outlier pixel values in the target images, we first
ran the 19×19-GICP method on each reference and target image
pair without applying sigma-clipping. The model image fit and its
noise model were used to clip pixel values with |εij| ≥ 4 and the
corresponding pixels were included in the bad pixel mask for the
target image. Then, for each kernel solution method, we computed
kernel and differential background solutions for all of the reference
and target image pairs, ignoring bad pixels and without using sigma-
clipping. In all cases, we used three iterations for each solution. The
optimization of λ for the GICP and BICP model selection criteria was
performed in the same way as for the simulations (see Section 5.3).

We are unable to assess the performance of each kernel solution
method with regards to model error since the true model image is
unknown for real data. Hence we do not calculate the MSE metric.
However, the photometric scale factor for each solution may be
compared on a relative scale. For each of the 587 parent images,
we compute the median value of P from the 19×19-GICP fits for
the 250 corresponding target images, and, for comparison purposes
only, we use these median P values to normalize the values of P
estimated by each kernel solution method for each target image.
Hence the median of the normalized P values for each parent image
for the 19×19-GICP method is always unity.

The remaining model performance metrics require a reliable
noise model for their computation. For the simulations, this noise
model was precisely known since it was used to generate the sim-
ulated data. However, for the real data, we may only estimate the
noise in each pixel. For a fair comparison between the different ker-
nel solution methods for each reference and target image pair, we
employ a single noise model corresponding to the 19×19-GICP fit
when calculating the model performance metrics. In other words,
we use the pixel values from the 19×19-GICP model image fit
in equation (13) to calculate the σ ij values which we then use in
place of the σ in, tar, ij in equations (60) and (61) for the purpose of
calculating the MFB and MFV metrics.

To assess the photometric accuracy of each kernel solution
method, we again perform PSF fitting on the difference image at
the position of the central star in the reference image region (which
is one of the 250 stars selected randomly from the reference image
star list). The method is the same as that used to perform PSF fit-
ting in the simulations, except that we employ the empirical PSF
at the measured star position on the reference image determined by
shifting the empirical PSF model corresponding to the nearest pixel
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by the appropriate sub-pixel shift using cubic O-MOMS resam-
pling. The noise model used for the PSF fitting is the noise model
corresponding to the model image fit for the kernel solution method
under consideration. The computation of the MPB and MPV mea-
sures also requires the calculation of a reasonable and consistent
normalization factor for the difference fluxes. Again we use an es-
timate of the theoretical minimum variance σ 2

min in the difference
flux Fmeas on the photometric scale of the reference image. We cal-
culate σ 2

min from equation (62) by setting Ptar to the empirical PSF
for the star convolved with the 19×19-GICP kernel solution and
normalized to a sum of unity, and by again setting the σ in, tar, ij to the
σ ij values obtained using the 19×19-GICP model image fit. Finally,
we take the appropriate normalization factor calculated earlier for
the photometric scale factors (which also use the 19×19-GICP fits)
as the best available estimate of the true photometric scale factor
Ptrue. The MPB and MPV measures are then calculated for a set of
Nset flux measurements Fmeas,k indexed by k via equations (63) and
(64).

6.1.3 Results and discussion

In Fig. 9, for each kernel solution method we plot the median P,
MFB, and MFV values, and the MPB and MPV measures, as a
function of fker (determined from fref and ftar using equation 55) for
the results from the target images with SNtar > 40. The data are
binned in fker with bins of size 0.2 pix. The results for the main
methods of interest are plotted with coloured filled circles (light
brown for IKDA-AICC; green for IKDA-TIC; blue for 19×19-
GICP; red for 19×19-UNREG) such that the area of each circle is
proportional to the number of data values used in the estimation of
the central value. The largest circle corresponds to 9793 data values.
The results for the remaining kernel solution methods are plotted
with black dots. Note that the values of P displayed in the top-left
plot panel have been normalized using the results from the 19×19-
GICP method as described in the previous section. We also produce
a similar style plot for the median λ values for the 19×19-GICP

method in the top-right plot panel.
To facilitate a comparison with our simulations, we also plot

curves in each panel for the IKDA-AICC (light brown), IKDA-TIC
(green), 19×19-GICP (blue), and 19×19-UNREG (red) methods
representing the results from simulation set S10 (high-S/N reference
image) for the relevant model performance metric as a function of
fker. Each point on a curve is calculated as the median value (for P,
λ, MFB, and MFV) of the results from ∼4000 simulations, or via
equations (63) and (64) (for MPB and MPV), by using a smoothing
radius of 0.33 pix in the (fker, fref) plane (fref = 3.44 pix in this case)
and considering only SNtar > 40. For an easier comparison to the
results from the real data, the curves for the MFV and MPV metrics
have been scaled by factors of 1.045 and 1.7, respectively.

The plots in Fig. 9 nicely demonstrate that the results for the real
data follow the same patterns as those for the simulations. For in-
stance, the results for the IKDA-AICC and IKDA-TIC methods are
virtually indistinguishable, and the order of the methods from high
to low values for each of the five model performance metrics are the
same (e.g. MPB goes blue–red–brown/green for both the points and
the curves). Furthermore, the trends in the results for the real data as
a function of fker are similar to those seen in the simulation results
(e.g. see P and MPB) even if the actual values do not match up so
closely (e.g. see P for the two IKDA methods). Finally, our recom-
mended kernel solution methods from Section 5.5 outperform the
remaining methods (except 19×19-UNREG) with respect to each

of the five model performance metrics. These are comforting re-
sults given the fact that the simulated data are generated based on
approximations to the properties of real data (e.g. adopting circu-
larly symmetric Gaussian PSF profiles in the simulations when real
data exhibit PSFs that deviate from circular symmetry and Gaussian
functions).

A few points about the plots in Fig. 9 are worth considering
in more detail. We find that P is equally underestimated for these
real data by ∼1 per cent for the two IKDA methods relative to the
19×19-GICP and 19×19-UNREG methods, although we do not
know which method provides the best estimate of the true value of
P for the real data. Also, this fact does not seems to have had a detri-
mental impact on the photometric bias for the two IKDA methods.
The median MFB values for the real data do not follow the shape
of the MFB curves derived from the simulations, but their absolute
values are generally even smaller than those from the simulations
(<2 × 10−4σ min). The scaling of the simulation results to match the
results from the real data for the MFV metric is most likely neces-
sary because the pixel uncertainties are somewhat underestimated
for the real data due to unmodelled sources of error (e.g. flat-field
errors, error in the gain, errors in the empirical PSF, etc.). However,
for the MPV metric, the scale factor between the simulation results
and those from the real data is much larger, and we suggest an
alternative explanation for this below. Once the simulation results
for the MFV and MPV metrics have been scaled, they match very
satisfactorily with the results from the real data.

Focusing on the results for the real data with regards to photo-
metric accuracy, we find that the gradients in the MPB measure as
a function of fker for the IKDA-AICC, IKDA-TIC, 19×19-GICP,
and 19×19-UNREG methods are very similar and cover a range
of ∼0.40σ min. However, the MPB values are closest to zero for the
two IKDA methods indicating a smaller photometric bias. None of
the remaining methods perform as well as these four methods in
terms of MPB. In Fig. 10, we plot the MPV measure calculated for
each star light curve (i.e. from 587 photometric measurements in
each case) as a function of the ratio of the star flux to the total ob-
ject flux within the target image region. The quantity on the x-axis
(ffrac) indicates by how much the flux from the star on which the
photometry is performed dominates the total object flux, and hence
the kernel solution, in the target image region. For ffrac � 0.2, it
is clear that the four methods under consideration tend to overfit
the real data in the same manner as we found for the simulations,
with the 19×19-UNREG and 19×19-GICP methods doing the most
overfitting. For ffrac � 0.2, the MPV values scatter nicely around
∼1.2 for the IKDA-AICC and IKDA-TIC methods. This plot also
explains the large scale factor for the MPV metric between the re-
sults for the simulations and those for the real data if one considers
that ∼70 per cent of the simulations have ffrac > 0.1 (where overfit-
ting mainly occurs), compared to only ∼24 per cent of the reference
and target image pairs for the real data. Referring back to the MPV
plot panel in Fig. 9, if we ignore the 19×19-UNREG and 19×19-
GICP methods because of their excessive overfitting, then we can
see that the IKDA-AICC and IKDA-TIC methods consistently attain
the best MPV values. Hence our conclusions from the simulations
are fully validated by the application of the kernel solution methods
to the INT image data; namely that the IKDA-AICC and IKDA-TIC
methods are equally the best in terms of the photometry that they
yield, and that the 19×19-GICP method is a close second best.

Finally, it is interesting to note that the values of λ selected by the
19×19-GICP method for the real data are ∼10 times smaller than
the values selected for the simulations, while the variation of λ as a
function of fker has the same form.
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562 D. M. Bramich et al.

Figure 9. Plots of the median P, MFB, and MFV values (equations 12, 60, and 61), and the MPB and MPV measures (equations 63 and 64), for each kernel
solution method as a function of fker. The plots correspond to the results for the INT target images with SNtar > 40. The data are binned in fker with bins of size
0.2 pix. Coloured filled circles correspond to the IKDA-AICC (light brown), IKDA-TIC (green), 19×19-GICP (blue) and 19×19-UNREG (red) methods such
that the area of each circle is proportional to the number of data values used in the estimation of the central value. The largest circle corresponds to 9793 data
values. Black dots represent the results for the remaining kernel solution methods. The values of P displayed in the top-left panel have been normalized using
the results from the 19×19-GICP method as described in Section 6.1.2. The median λ values for the 19×19-GICP method are plotted in the top-right panel.
The curves correspond to the results from simulation set S10 (see text in Section 6.1.3 for details).

6.2 Time-series observations of a Galactic field

6.2.1 Data and reductions

The second data set comes from a commissioning run for the Qatar
Exoplanet Survey (QES; Alsubai et al. 2013). The data were ob-
served using camera 5 of the second QES observing station at the
New Mexico Skies observatory, New Mexico, USA. We selected a
block of 27 images (4096 × 4096 pix; 3.1 arcsec pix−1) of the same

field (RA∼14 h; Dec.∼0 deg) taken on the night of 2015 May 11
during an ∼2.2 h period. Each image has an exposure time of 30 s.

We used the DanDIA pipeline to calibrate the images (bias level
subtraction and flat-fielding) and to measure the chip readout noise
(∼7.85 ADU) and gain (∼1.65 e−/ADU). We also used the pipeline
to create a high-S/N stacked reference image from a block of ten 30 s
images of the same field taken later during the night and to produce
an associated star list with 84 069 stars (see Section 6.1.1 for the
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DIA: methods for automatic kernel design 563

Figure 10. Plot of the MPV measure (equation 64) for each star light curve as a function of the ratio of the star flux to the total object flux within the target
image region (ffrac). Coloured filled circles correspond to the IKDA-AICC (light brown), IKDA-TIC (green), 19×19-GICP (blue) and 19×19-UNREG (red)
methods. This plot corresponds to the results for the INT target images.

method). The PSF FWHM of the reference image was measured to
be fref ∼ 2.70 pix.

We selected 1000 random stars from the reference image star list
avoiding stars within 200 pixels of the image edges. Following the
same steps as those used for the INT data, we created 1000 reference
and target image pairs for each of the 27 parent target images in the
time series, yielding 27 000 image pairs in total. The procedures
described in Section 6.1.2 for the INT data were then applied to
the QES data to compute the kernel and differential background
solutions for each kernel solution method, and to calculate the model
performance metrics.

6.2.2 Results and discussion

The results for the QES data are plotted in Fig. 11, which has been
constructed in exactly the same way as Fig. 9 for the INT data.
Note that the QES data are more limited in that they only cover the
range −0.4 < fker < 1.8 pix. In this case, the curves for the MFV
and MPV metrics have been scaled by factors of 1.045 and 1.5,
respectively.

The conclusions for the QES data are the same as those for the
INT data. The few exceptions for these data are that P is only under-
estimated by up to ∼0.2 per cent for the IKDA-AICC and IKDA-TIC
methods relative to the 19×19-GICP and 19×19-UNREG methods,
the absolute values of the MFB metric are larger, and there is more
scatter in the MPB and MPV measures (probably because fewer data
have been analysed). Therefore the results for the QES data add a
further independent validation of the results from our simulations.

7 C O N C L U S I O N S A N D R E C O M M E N DAT I O N S

The key achievement in this work is the elaboration of a framework
for automatically constructing a kernel model (or, equivalently, a
model image) for DIA where the user is only required to specify
very few external parameters to control the kernel design (e.g. the
maximum extent of the kernel). The framework requires the defini-
tion of a kernel solution method that consists of two components;
namely, a kernel design algorithm to generate a set of candidate
kernel models, and a model selection criterion to select the simplest
kernel model from the candidate models that provides a sufficiently
good fit to the target image (i.e. an implementation of the Principle
of Parsimony). The framework also requires the definition of an
appropriate detector noise model with associated parameters such
as readout noise and gain. It is crucial that this noise model is accu-
rate since the model selection criteria depend heavily on the pixel
uncertainties provided by the noise model. We developed and tested
18 automatic kernel solution methods using comprehensive image
simulations and real data, and we compared their performance to
that of a fixed unregularized kernel design (i.e. the 19×19-UNREG
method).

The main conclusion from the image simulations (Section 5)
is that the IKDA-AICC and IKDA-TIC methods are equally the
best kernel solution methods in terms of photometric accuracy. The
19×19-GICP method also performs very well and is a good second
choice. This conclusion is also supported by considering the perfor-
mance of these methods with regards to model error and fit quality.
The 19×19-UNREG method gives excellent estimates of the pho-
tometric scale factor (Fig. C2) with what appear to be some of the
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Figure 11. Same as Fig. 9 for the QES data. The largest circle corresponds to 5273 data values.

most uniform and least-biased model image fits (Fig. C3) and PSF
photometry (Fig. 5). However, this is somewhat misleading since the
model performance metrics that measure the fit variance (Fig. C4)
and the photometric variance (Fig. 6) reveal that this method is the
worst offender for overfitting the target image. Hence we concur
with the findings from Be12 that the unregularized 19×19-pixel
kernel design brings too many parameters to the model image.
Moreover, we have shown that kernel regularization (via Tikhonov
regularization) is not the only way, or even necessarily the best way,
to control the overfitting. The IKDA-AICC and IKDA-TIC methods
achieve a better performance than the regularized kernel designs via
a parsimonious choice of unregularized DBFs. Taking this further by
combining the IKDA with regularization (i.e. the IKDA-GICP and
IKDA-BICP methods) was unfortunately not possible as we found

that the corresponding processing time was prohibitive. From the
simulations, we also discovered that the AIC-type model selection
criteria work better than the BIC-type criteria for DIA, which we
explain by considering that the true model image is not included in
the set of candidate model images generated by our kernel design
algorithms.

We also analysed two independent sets of real image data cover-
ing different regions in the reference and target image PSF FWHM
and S/N parameter space (Section 6). The results for the real data
were found to follow the same patterns and trends as the results
from the simulations. Most importantly, the IKDA-AICC, IKDA-
TIC, and 19×19-GICP methods were also found to be the best
kernel solution methods in terms of photometric accuracy for the
real data.
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In practical terms, the AICC model selection criterion is much
easier to implement (trivial in fact), and various orders of magnitude
faster to calculate, than the TIC or GICP criteria. Since the IKDA-
AICC and IKDA-TIC methods yield virtually the same results, it is
clear that the IKDA-AICC method is the most desirable of the two
for implementation. However, the IKDA can be somewhat slower to
run than the optimization of GICP over λ for the fixed 19×19-pixel
kernel design. This is especially true when the IKDA attempts to
grow a kernel model with many DBFs. Hence, if processing time is a
concern, then the 19×19-GICP method may be more desirable than
the IKDA-AICC method, even if the results are slightly less optimal.
One caveat of the 19×19-GICP method is that a 19×19-pixel grid
may not be large enough for an adequate kernel solution for some
DIA problems, and its size may therefore needs to be increased as
appropriate.

Our work constitutes the first fully systematic and comprehensive
attempt to characterize the performance of DIA as a function of the
reference and target image properties using simulated images and
with validation on real data. We have learned some important facts
from these experiments which may be translated into the following
recommendations.

(i) It is vastly advantageous to use a reference image with higher
S/N than that of the target image regardless of the image properties
or the kernel solution method. We therefore recommend that the
reference image is constructed either by exposing for longer than the
target image(s), or by stacking a set of registered images to achieve a
longer effective exposure time, while at the same time maintaining
the requirement that the reference image has a PSF FWHM that
is among the smallest PSF FWHMs of the target image(s). We
realize that this particular advice is already followed for most DIA
reductions. However, it is comforting to see that our comprehensive
simulation work strongly supports this approach.

(ii) In general, the photometric scale factor between the reference
and target image is underestimated. However, this effect is smaller
for higher S/N target images. Given the importance of obtaining
an accurate estimate of the photometric scale factor for accurate
photometry, we recommend employing all of the pixels in the target
image to solve for the kernel, since this maximizes the S/N of the
data that are being fit.

(iii) In most of our simulations, we found that all of the kernel
solution methods are overfitting the brightest star(s) and underfitting
the faintest star(s) since the brightest star(s) dominate the kernel
solution. The effect on the photometry of the brightest star in each
target image is to yield variances that are impossibly, and therefore
misleadingly, small. We used target images of size 101 × 101 pixels
both for the simulations and the tests on the real data. We found
that by increasing the size of the target images, this effect on the
photometry is mitigated since more bright stars, and therefore more
pixels from bright stars, are used to derive the kernel solution. Hence
we again recommend employing all of the pixels in the target image
to solve for the kernel.

These last two recommendations have important implications
for some popular DIA software implementations that generate a
spatially varying kernel solution for an image by interpolating a
set of spatially invariant kernel solutions determined independently
from small image regions called ‘stamps’ (e.g. ISIS – Alard 2000,
HOTPANTS8). The stamps are chosen to be approximately uniformly

8 http://www.astro.washington.edu/users/becker/v2.0/hotpants.html

distributed across the image area, centred on isolated bright stars,
and only slightly larger than the objects they encompass (e.g. in
Be12, the stamp size is ∼57 × 57 pix, with only ∼39 × 39 pix used
for the kernel solution). We believe that it will be highly beneficial to
modify the stamp selection strategy in these algorithms to match our
recommendations. Specifically, image stamps should be defined to
be as large as possible without seriously violating the assumption of
a spatially invariant kernel model within the stamp, and they should
be selected such that each stamp contains a minimum of at least a
few bright objects (not necessarily stars, and there is no reason to
avoid blended objects). Our tests on real data suggest the following
useful rule-of-thumb: the ratio of the flux of the brightest star to
the total flux of all objects in a stamp should be less than ∼0.1.
It is not surprising that Be12 found that the unregularized 19×19-
pixel kernel with 361 parameters was overfitting a target image
stamp with just ∼1520 pixels, of which only a small proportion
contain signal from the single object9 (see their section 4). We are
confident that if Be12 were to repeat their experiment for a set of
image stamps selected following our recommendations, then the
unregularized 19×19-pixel kernel would have been found to be
overfitting the stamps to a much lesser extent than reported.

Be12 recommend values of λ between 0.1 and 1 for regularized
19×19-pixel kernels while cautioning that the ‘optimal value of λ

will be a function of the S/N in the template and science images,...
and of the respective seeings in the input images,...’. We have char-
acterized precisely how the optimal value of λ, as selected by the
GICP and BICP criteria, varies as a function of the reference and tar-
get image properties for four kernel solution methods (Section 5.6).
We find that the optimal value of λ is highly correlated with the
PSF FWHM and S/N in each of the reference and target images,
and that it spans values from λ = 0 (i.e. no regularization) up to
maximum values of the order of λ = 10 and 100 for GICP and
BICP, respectively. We conclude that the optimal regularization of
the kernel model for any particular kernel solution method is highly
data set dependent and that it should be determined independently
for each target image.

Looking to the future, we can see much potential for the de-
velopment and testing of new kernel design algorithms within our
framework that may perform better than those presented in this
work. In fact, we believe that there is still plenty of room for im-
provement in the kernel solution methods, especially with regards to
achieving the best photometry. For example, the poor performance
of the CKDA methods, including those employing kernel regular-
ization, was a disappointment. It would be interesting to investigate
whether adopting a radial dependence for the strength of the ker-
nel regularization can improve the CKDA performance, since we
expect the variations in the true kernel model to be smallest in the
outer parts of the kernel. Most intriguingly, the ‘spidery’ form of the
kernels that are generated by the IKDA methods, combined with the
fact that they perform exceptionally well, implies that sparsity may
be the key to the optimal use of DBFs in DIA. Finally, it remains to
extend the methods presented here to the case of a spatially varying
convolution kernel.

9 Be12 found that the normalized residuals in the difference image for their
example have a standard deviation of ∼0.79 for the unregularized 19×19-
pixel kernel. However, it should be noted that this is perfectly consistent
with a reduced chi-squared of unity.
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Blu T., Thévenaz P., Unser M., 2001, IEEE Trans. Image Process., 10,

1069
Bramich D. M., 2008, MNRAS, 386, L77
Bramich D. M. et al., 2005, MNRAS, 359, 1096
Bramich D. M., Figuera Jaimes R., Giridhar S., Arellano Ferro A., 2011,

MNRAS, 413, 1275
Bramich D. M. et al., 2013, MNRAS, 428, 2275 (Br13)
Bramich D. M., Bachelet E., Alsubai K. A., Mislis D., Parley N., 2015,

A&A, 577, A108
Furnival G., Wilson R., 1974, Technometrics, 16, 499
Golub G. H., Van Loan C. F., 1996, Matrix Computations, 3rd edn. Johns

Hopkins Univ. Press, Baltimore, MD
Israel H., Hessman F. V., Schuh S., 2007, Astron. Nachr., 328, 16
Konishi S., Kitagawa G., 1996, Biometrika, 83, 875
Konishi S., Kitagawa G., 2008, Information Criteria and Statistical Model-

ing. Springer-Verlag, Berlin
Konishi S., Ando T., Imoto S., 2004, Biometrika, 91, 27
Kullback S., Leibler R. A., 1951, Ann. Math. Stat., 22, 79
Miller J. P., Pennypacker C. R., White G. L., 2008, PASP, 120, 449
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 2007, Nu-

merical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge
Univ. Press, Cambridge

Schwarz G., 1978, Ann. Stat., 6, 461
Sugiura N., 1978, Commun. Stat. - Theory Methods, A7, 13
Takeuchi K., 1976, Math. Sci., 153, 12
Yuan F., Akerlof C. W., 2008, ApJ, 677, 808

APPENDIX A

We provide two examples of the Laplacian matrix L. For the square
3 × 3-pixel kernel design shown in Fig. A1, where the value of q
is displayed inside each kernel pixel, we may use equation (20) to
obtain the 10 × 10 matrix:

Figure A1. Example configurations of sets of kernel DBFs. Individual
DBFs are represented by red squares positioned at the kernel pixel coordi-
nates where they take the value unity. Each red square displays the value of
q for the corresponding DBF.

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 −1 0 0 0 0 0 0

−1 3 −1 0 −1 0 0 0 0 0

0 −1 2 0 0 −1 0 0 0 0

−1 0 0 3 −1 0 −1 0 0 0

0 −1 0 −1 4 −1 0 −1 0 0

0 0 −1 0 −1 3 0 0 −1 0

0 0 0 −1 0 0 2 −1 0 0

0 0 0 0 −1 0 −1 3 −1 0

0 0 0 0 0 −1 0 −1 2 0

0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix is of rank equal to 8, as expected since all of the
DBFs are connected to each other. The elements of the last row and
column correspond to the differential background parameter and
are consequently all zero.

Kernels may of course be of any shape. For the 7-pixel kernel
design shown in Fig. A1, equation (20) yields:

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0 0 0 0

−1 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0

0 −1 −1 4 −1 0 −1 0

0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 1 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix is of rank equal to 5, which is explained by the fact that
there are two disconnected sets of connected DBFs in the kernel
model.

APPENDI X B

In this appendix, we present Figs B1–B4 where we plot the median
MSE, P, MFB, and MFV values, and the MPB and MPV measures,
for each kernel solution method for various subsets of our simula-
tions chosen based on image sampling. These plots are referred to
briefly in Sections 5.3 and 5.4.
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Figure B1. Plots of the median MSE, P, MFB, and MFV values (equations 59, 12, 60, and 61), and the MPB and MPV measures (equations 63 and 64), for
each kernel solution method for fref ≤ 2.35 pix and ftar ≤ 2.35 pix. The results in each plot have been calculated from ∼19 000 simulations for each of the
simulation sets S1 and S10. The layout, symbols, and colours used are the same as in Fig. 4. The IKDA-GICP and IKDA-BICP methods are excluded when
determining the best values of the relevant model performance metric.

MNRAS 457, 542–574 (2016)

 at Q
atar Foundation for E

ducation, Science and C
om

m
un on February 1, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


568 D. M. Bramich et al.

Figure B2. Plots of the median MSE, P, MFB, and MFV values (equations 59, 12, 60, and 61), and the MPB and MPV measures (equations 63 and 64), for
each kernel solution method for fref ≤ 2.35 pix and ftar ≥ 2.35 pix. The results in each plot have been calculated from ∼29 000 simulations for each of the
simulation sets S1 and S10. The layout, symbols, and colours used are the same as in Fig. 4. The IKDA-GICP and IKDA-BICP methods are excluded when
determining the best values of the relevant model performance metric.
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Figure B3. Plots of the median MSE, P, MFB, and MFV values (equations 59, 12, 60, and 61), and the MPB and MPV measures (equations 63 and 64),
for each kernel solution method for fref ≥ 2.35 pix and fker ≤ 0 pix. The results in each plot have been calculated from ∼22 000 simulations for each of the
simulation sets S1 and S10. The layout, symbols, and colours used are the same as in Fig. 4. The IKDA-GICP and IKDA-BICP methods are excluded when
determining the best values of the relevant model performance metric.
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Figure B4. Plots of the median MSE, P, MFB, and MFV values (equations 59, 12, 60, and 61), and the MPB and MPV measures (equations 63 and 64), for
each kernel solution method for fref ≥ 2.35 pix and 0 ≤ fker ≤ 2.35 pix. The results in each plot have been calculated from ∼53 000 simulations for each of the
simulation sets S1 and S10. The layout, symbols, and colours used are the same as in Fig. 4. The IKDA-GICP and IKDA-BICP methods are excluded when
determining the best values of the relevant model performance metric.
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APPENDIX C :

For completeness of this paper, in Figs C1–C4 we plot surfaces
representing the median MSE, P, MFB, and MFV values for sim-
ulation set S10 as a function of the reference image and kernel
FWHM. These plots are referred to briefly in Section 5.5.

Figure C1. Plots of surfaces representing the median MSE values (equation 59) for simulation set S10 as a function of the reference image and kernel FWHM.
The format of the figure is the same as in Fig. 5.

MNRAS 457, 542–574 (2016)

 at Q
atar Foundation for E

ducation, Science and C
om

m
un on February 1, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


572 D. M. Bramich et al.

Figure C2. Plots of surfaces representing the median P values (equation 12) for simulation set S10 as a function of the reference image and kernel FWHM.
The format of the figure is the same as in Fig. 5.
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Figure C3. Plots of surfaces representing the median MFB values (equation 60) for simulation set S10 as a function of the reference image and kernel FWHM.
The format of the figure is the same as in Fig. 5.
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Figure C4. Plots of surfaces representing the median MFV values (equation 61) for simulation set S10 as a function of the reference image and kernel FWHM.
The format of the figure is the same as in Fig. 5.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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