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ABSTRACT

Context. Understanding the source of systematic errors in photometry is essential for their calibration.
Aims. We investigate how photometry performed on difference images can be influenced by errors in the photometric scale factor.
Methods. We explore the equations for difference image analysis (DIA), and we derive an expression describing how errors in the
difference flux, the photometric scale factor and the reference flux are propagated to the object photometry.
Results. We find that the error in the photometric scale factor is important, and while a few studies have shown that it can be at a
significant level, it is currently neglected by the vast majority of photometric surveys employing DIA.
Conclusions. Minimising the error in the photometric scale factor, or compensating for it in a post-calibration model, is crucial for
reducing the systematic errors in DIA photometry.
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1. Introduction

The technique of difference image analysis (DIA; Alard &
Lupton 1998; Alard 2000; Bramich 2008; Becker et al. 2012;
Bramich et al. 2013) is based on matching a reference image to
a target image by modelling the differences in alignment, point-
spread function (PSF), exposure time, atmospheric extinction,
and sky background between them. Specifically, a convolution
kernel is used to model the first four differences (to within a
small translational offset) while an additive differential back-
ground is used to model the last. The reference image is trans-
formed by convolving it with the kernel and adding the differ-
ential background, and the result is subtracted from the target
image to create a difference image. All non-varying sources are
fully subtracted in the difference image, leaving a signal only for
sources that have varied in brightness (or possibly position).

Difference image analysis is being increasingly used for
precision photometry and transient detection in a wide range
of photometric surveys (e.g. PanSTARRS − Kaiser et al.
2002; OGLE − Udalski 2003; LSST − Ivezić et al. 2008;
RoboNet-II − Tsapras et al. 2009; QES − Alsubai et al. 2013).
Furthermore, these surveys are investing substantial efforts into
post-calibration to minimise the systematic noise in the survey
photometry that affects important aspects such as the detection
limits, homogeneity, and completeness (e.g. Stubbs et al. 2010;
Ofek et al. 2012; Wittman et al. 2012). Therefore, it is crucial to
understand how the difference images, on which the photometry
is performed, are created and how systematic errors in the dif-
ference images themselves can affect the photometry. However,
there is no study in the literature on the systematic errors specific
to DIA. In this research note, we have opened the investigation
into systematic errors in DIA by exploring the effect that an error

in the kernel sum, known as the photometric scale factor, may
have on the photometry.

2. Equations

The target image I is modelled as the convolution of a refer-
ence image R with a convolution kernel plus a differential back-
ground. If one considers the kernel as the product of a photomet-
ric scale factor P and a normalised (by its sum) kernel K, then
the model target-image M is defined as follows:

M = P (R ⊗ K) + B. (1)

The corresponding difference image D is the image of model
residuals given by

D = I − M
= I − P (R ⊗ K) − B.

(2)

Now assume that an object consisting of a source of interest and
a blend has a true flux f (t) on the photometric scale of the refer-
ence image that is given by

f (t) =

(
1 +

k(t)
1 + kb

)
(1 + kb) fS, (3)

where k(t) is a function of time t that represents any variability
in the source and kb is the true blend ratio. Without loss of gen-
erality, adopt k(0) = 0 so that the quantity fS represents the true
source flux at t = 0. The true blend flux kb fS makes the source
appear brighter by a factor of (1 + kb) and reduces the apparent
fractional flux-amplitude of any source variability by the same
factor.
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It follows that the true object flux fR on the reference image
taken at t = 0 is

fR = (1 + kb) fS, (4)

and that the true object flux fI(t) on the target image taken at
time t is

fI(t) = P f (t). (5)

By considering Eq. (2), the true object flux fD(t) on the differ-
ence image may be computed as

fD(t) = fI(t) − P fR. (6)

By substituting Eq. (5) into Eq. (6) and rearranging, f (t) may be
written in terms of the measurable quantities fR and fD(t) as

f (t) = fR + fD(t)/P. (7)

This is the equation used to convert difference fluxes into total
fluxes and thence magnitudes (e.g. Bramich et al. 2011).

Unfortunately, the modelling of the target image is never per-
fect, and the difference image consequently suffers from small
systematic errors that are propagated to the photometry. An er-
ror in the fitted differential background that results in a non-
zero background in the difference image is trivially accounted
for, at the expense of a little extra variance in the photome-
try, by including the background as a parameter in the method
used to perform the photometry on the difference image (i.e.
PSF fitting or aperture photometry). However, an error in the
PSF matching (both shape and scale) produces systematic resid-
uals at the object positions that are more difficult to mitigate at
the image-processing stage. Aperture photometry is agnostic to
mismatches in PSF shape, but will be affected by an error in
the fitted photometric scale factor. PSF photometry, on the other
hand, is sensitive to mismatches in both PSF shape and scale,
but will provide photometry with smaller variance than aperture
photometry when stochastic noise dominates. For these reasons,
we ignore the error in the fitted differential background, we treat
the error in the fitted normalised kernel as part of the error in-
troduced into the photometry by the measurement process on
the difference image, and we assume that the fitted photometric
scale factor suffers from a small fractional error.

We use P ′, K ′, and B ′ to represent the fitted photometric
scale factor, kernel, and differential background. Employed in
Eq. (2), these give us the difference image D ′ with systematic
errors. If we assume that the difference flux is measured with an
error of εD fI(t) due to stochastic noise and/or the error in K ′,
and if we also assume that the error in B ′ can be successfully
accounted for, then we obtain the following measured difference
flux on D ′ for the object:

f ′D ′ (t) = fI(t) − P ′ fR + εD fI(t). (8)

Adopting the expression P ′ = (1+εP) P for the relation between
P ′ and P, and using Eqs. (3) to (5), we may derive

f ′D ′ (t) = P ((1 + εD) k(t) + (εD − εP) (1 + kb)) fS. (9)

If we now assume that the method of performing photometry
on the reference image yields a fractional flux error of εR in the
reference flux that is different from εD because of the different
nature of the reference image and/or method used, then the mea-
sured reference flux is f ′R = (1 + εR) fR. Using f ′R , f ′D ′ (t) and P ′

in Eq. (7) and doing some algebra yields the following expres-
sion for the measured object flux f ′(t) on the photometric scale
of the reference image:

f ′(t) =

(
1 +

k(t)
(1 + δ) (1 + kb)

) (
1 + εD

1 + εP

)
(1 + δ) (1 + kb) fS, (10)

where

δ = εR

(
1 + εP

1 + εD

)
· (11)

Equation (10) describes how the measured flux of a constant
source (k(t) = 0 for all t), or a variable source (k(t) , 0 for
at least some t), is distorted by the errors εD, εP, and εR. The
equation has been written in the form above to facilitate direct
comparison to Eq. (3), which represents the true object flux. The
ratio of the measured to the true object flux is

f ′(t)
f (t)

=

1 +
δ

1 +
k(t)

1+kb

 (
1 + εD

1 + εP

)
· (12)

In magnitudes, Eqs. (3) and (10) become

m(t)=−2.5 log( fS) − 2.5 log
(
1 +

k(t)
1 + kb

)
− 2.5 log(1 + kb) (13)

m ′(t) = −2.5 log( fS) − 2.5 log
(
1 +

k(t)
(1 + δ) (1 + kb)

)
−2.5 log(1 + εD) + 2.5 log(1 + εP)
−2.5 log(1 + δ) − 2.5 log(1 + kb), (14)

where m(t) and m ′(t) are the true and measured object mag-
nitudes, respectively, on the magnitude scale of the reference
image.

3. Discussion

The difference flux fD(t) is a quantity that is measured for each
object on each difference image, and therefore εD is specific to
the object and difference image under consideration. However,
for multiple difference images, any systematic (as opposed to
stochastic) component in εD that is a function of either an object
property (e.g. colour) and/or an image property (e.g. pixel coor-
dinates) may be estimated by solving for the appropriate mag-
nitude offsets using the DIA photometry of all of the constant
objects in the corresponding target images. This approach was
developed by authors such as Honeycutt (1992) and Manfroid
(1995) and is starting to be adopted by many surveys as the
standard procedure for performing a post-calibration of the pho-
tometric data (e.g. Padmanabhan et al. 2008). In this respect,
post-calibration of DIA photometry is no different than the post-
calibration of photometry performed directly on the target im-
ages. The appropriate magnitude offsets to be determined from
the constant objects are represented by the term −2.5 log(1 +εD)
in Eq. (14) and their absolute values are usually of the order of
∼1−30 mmag.

The reference flux fR is a quantity that is measured for each
object on the reference image. Therefore the error εR is indepen-
dent of the target image (or time) and it affects the photometry
of constant objects by making them systematically too bright
(εR > 0) or too faint (εR < 0). Variable objects suffer this same
systematic error, and in addition, their fractional flux-amplitude
of variation is either systematically amplified (εR < 0) or re-
duced (εR > 0) by a factor of (1 + δ) ∼ (1 + εR) to first order. In
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this respect, the effect of εR is equivalent to that of an extra blend
flux. The absolute value of εR is usually in the range of typical
photometric precisions of ∼0.1−5%. Unless the DIA photome-
try has a very low stochastic noise component (<∼0.01%), εR is
indistinguishable from kb since its effect on f ′(t) only differs
from that of kb to second order (see Eqs. (10) and (11)). We
do not consider any further the intricacies of disentangling the
source flux, blend ratio, and reference flux error. We note, how-
ever, that when the blend ratio can be determined (e.g. by using
external information, or for certain types of variability such as
microlensing events), the estimated blend ratio k ′b is related to
the true blend ratio by k ′b ∼ (1 + εR) kb + εR.

When fitting the model target-image, the photometric scale
factor P is typically assumed to be spatially invariant and hence
is characterised by a single number, although P may also be
modelled as a function of detector coordinates (Bramich et al.
2013). Regardless of how P is modelled, the error εP will
be different for each target image since it is determined on a
per-image basis from noisy images. Other effects such as flat-
fielding errors, or changing non-uniform atmospheric extinction
(i.e. clouds and/or airmass gradients), may conspire to make εP
specific to the object and target image under consideration. As
with εD, some of the systematic components in εP may be esti-
mated by solving for the appropriate magnitude offsets using the
DIA photometry of all of the constant objects in the target im-
ages. In fact, the systematic components in εP that are also com-
mon to those in εD may be absorbed into the magnitude offsets
represented by the term −2.5 log(1 + εD) in Eq. (14). However,
the remaining systematic components in εP, if left uncorrected,
will cause errors in the DIA photometry that have the potential
of being misinterpreted as real signals.

4. Summary and recommendations

The vast majority of photometric surveys employing DIA do not
consider P to be a source of error since it is assumed that P has
been precisely determined, which is equivalent to assuming that
the differences in atmospheric extinction between the reference
and target images have been perfectly accounted for by the DIA
modelling itself. However, in this research note we have shown
that any errors in P that do exist will have an important effect on
the DIA photometry. We therefore strongly recommend that it
becomes standard procedure to assess and, if necessary, correct
for the effect of the mean error in P for each target image on the
DIA photometry (encapsulated by the term 2.5 log(1 + εP(t)) in
Eq. (14)).

One method to do this involves fitting a post-calibration
photometric model including a set of per-image magnitude
offsets 2.5 log(1 + εP(t)) to the DIA photometry of all of
the constant objects in the target images. Note that the
post-calibration model should also include the magnitudes
of the constant objects as free parameters (see Bramich
& Freudling 2012) and any other relevant terms such as
−2.5 log(1 + εD). If the variations in the per-image mag-
nitude offsets are found to be smaller than the level of the
stochastic noise in the best object photometry, then they may
be dropped from the post-calibration model. However, if they are

deemed to be significant, then the per-image magnitude offsets
2.5 log(1 + εP(t)) may be used to correct the DIA photometry of
all of the objects for the photometric error introduced by εP(t).

This technique has started to be used in the series of papers
on variable stars in globular clusters by the lead author (e.g.
Kains et al. 2013; Arellano Ferro et al. 2013, which employ
the methodology of Bramich & Freudling 2012), and in these
works the relevant per-image magnitude offsets are found to be
at the 0.1−2% level (see Fig. 1 of Kains et al. 2015). This exam-
ple clearly demonstrates that DIA does not always perform the
photometric matching between images to a precision that is be-
low the stochastic noise in the photometric measurements, and
it serves to emphasise how crucial it is to account for the mean
error in P for each target image to minimise the associated sys-
tematic errors.

Finally we caution that when low-level (<∼1−2%) suspected
signals occur in the DIA photometry of an object that cannot be
confirmed either by the detection of a repeating signal (for peri-
odic signals) or by independent observations taken at the same
epoch, a careful analysis of the images on which the suspected
signal was detected is warranted. It needs to be determined
whether there were any clouds (e.g. light cirrus) that may have
caused non-uniform atmospheric extinction across the field of
view that also evolves throughout the time series with the cloud
movement since this can cause smooth temporal variations in εP
that are different for each object and that will manifest them-
selves as smooth variations in the object light curves. Adopting
a spatially variable photometric scale factor in the model target-
image for the DIA may partly mitigate this problem.
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