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ABSTRACT
In the context of difference image analysis (DIA), we present a new method for determining

the convolution kernel matching a pair of images of the same field. Unlike the standard DIA

technique which involves modelling the kernel as a linear combination of basis functions, we

consider the kernel as a discrete pixel array and solve for the kernel pixel values directly using

linear least squares. The removal of basis functions from the kernel model is advantageous for a

number of compelling reasons. First, it removes the need for the user to specify such functions,

which makes for a much simpler user application and avoids the risk of an inappropriate choice.

Secondly, basis functions are constructed around the origin of the kernel coordinate system,

which requires that the two images are perfectly aligned for an optimal result. The pixel kernel

model is sufficiently flexible to correct for image misalignments, and in the case of a simple

translation between images, image resampling becomes unnecessary. Our new algorithm can

be extended to spatially varying kernels by solving for individual pixel kernels in a grid of

image subregions and interpolating the solutions to obtain the kernel at any one pixel.

Key words: methods: statistical – techniques: image processing – techniques: photometric.

1 I N T RO D U C T I O N

Difference image analysis (DIA) has rapidly moved to the forefront

of modern techniques for making time-series photometric measure-

ments on digital images. The method attempts to match one image

to another by deriving a convolution kernel describing the changes

in the point-spread function between images. When applied to a

time-series of images using a high signal-to-noise ratio (S/N) ref-

erence image, the differential photometry that can be performed on

the difference images regularly provides superior accuracy to more

traditional profile-fitting photometry, achieving errors close to the

theoretical Poisson limits. Moreover, DIA is the only reliable way

to analyse the most crowded stellar fields.

One will find DIA in use in many projects studying object vari-

ability. For example, microlensing searches (e.g. Bond et al. 2001;

Woźniak et al. 2001) have been revolutionized by the ability of DIA

to deal with exceptionally crowded fields, and surveys for transiting

planets (e.g. Bramich et al. 2005; Mochejska et al. 2005) looking for

small ∼1 per cent photometric eclipses have benefited substantially

from the extra accuracy obtained with this method. Also, DIA is

not limited to stellar photometry as illustrated by the discovery of

light echoes from three ancient supernovae in the Large Magellanic

Cloud (Rest et al. 2005).

The first attempts at image subtraction are summarized in the

introduction of Alard & Lupton (1998) (from now on AL98), and

are based on trying to determine the convolution kernel by taking the

ratio of the Fourier transforms of matching bright isolated stars on
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each image (Tomaney & Crotts 1996). Development of DIA reached

an important landmark in AL98 with their algorithm to determine

the convolution kernel directly in image space (rather than Fourier

space) from all pixels in the images by decomposing the kernel on

to a set of basis functions. The algorithm is very successful and

efficient, and with the extension to a space-varying kernel solution

described in Alard (2000) (from now on AL00), the method has

become the current standard in DIA. In fact, all DIA packages use

the associated software package ISIS2.21 (e.g. Woźniak 2000; Gössl

& Riffeser 2002), or are implementations of the Alard algorithm

(e.g. Bond et al. 2001). We refer to the method described in AL98

and AL00 as the Alard algorithm.

In this Letter, we suggest a change to the main algorithm to de-

termine the convolution kernel that retains the linearity of the least-

squares problem and yet is simpler to implement, has fewer input

parameters and is, in general, more robust (Section 2). We com-

pare our algorithm directly to the Alard algorithm (Section 3), and

suggest more techniques that increase the quality of the subtracted

images. We conclude in Section 4.

2 A N E W A P P ROAC H TO T H E K E R N E L
S O L U T I O N

2.1 Motivation

Consider a pair of registered images of the same dimensions, one

being the reference image with pixels Ri j , and the other the current

1 http://www2.iap.fr/users/alard/package.html
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image to be analysed with pixels Ii j , where i and j are pixel indices

referring to the column i and row j of the image. Ideally, the reference

image will be the better seeing image of the two and have a very high

S/N. This can be achieved in practice by stacking a set of best-seeing

images.

As with the method of AL98, we use the model

Mi j = (R ⊗ K )i j + Bi j (1)

to represent the current image Ii j , where we wish to find a suitable

convolution kernel K and differential background Bi j . Formulating

this as a least-squares problem, we want to minimize the χ2:

χ 2 =
∑

i j

(
Ii j − Mi j

σi j

)2

, (2)

where the σ i j represent the pixel uncertainties.

At this point in the Alard algorithm, the problem is converted to

standard linear least squares by decomposing the kernel K on to a

set of Gaussian basis functions, each multiplied by polynomials of

the kernel coordinates u and v, and by assuming that the differen-

tial background Bi j is represented by a polynomial function of the

image coordinates x and y. Spatial variation of the convolution ker-

nel is modelled by further multiplying the kernel basis functions by

polynomials in x and y.

This method has a major drawback in that it assumes that the

chosen kernel decomposition is sufficiently complex so as to model

in detail the convolution kernel. How do we know that we are mak-

ing the correct choice of basis functions? Different situations may

require different combinations of basis functions of varying com-

plexity. In fact, a feature of all current DIA packages (which are

all based on the AL98 prescription for kernel basis functions) is

the requirement that the user defines the number of Gaussian ba-

sis functions used, their associated sigma values and the degrees of

the modifying polynomials. This sort of parametrization can end

up being confusing for the user, and requires a large amount of

experimentation to obtain the optimal result for a specific data set.

2.2 Solving for a spatially invariant kernel solution

With this motivation, we have developed a new DIA algorithm in

which we make no assumptions about the functional form of the

basis functions representing the kernel. Considering a spatially in-

variant kernel, we represent the kernel as a pixel array Klm with NK

pixels where l and m are pixel indices corresponding to the column l
and row m of the kernel. We also define the differential background

as some unknown constant B0. Hence, we may rewrite equation (1)

as

Mi j =
∑

lm

Klm R(i+l)( j+m) + B0. (3)

This equation has NK + 1 unknowns for which we require a solution.

Note that the kernel may be of any shape that includes the pixel K00,

and so to preserve symmetry in all directions, we adopt a circular

kernel (instead of the standard square shape).

In order to solve for Klm and B0 in the least-squares sense, we note

that the χ2 in equation (2) is at a minimum when the gradient of χ2

with respect to each of the parameters Klm and B0 is equal to zero.

Performing the NK + 1 differentiations and rewriting the set of linear

equations in matrix form, we obtain the matrix equation Ua = b

with

Upq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i j

R(i+l)( j+m) R(i+l ′)( j+m′)

σ 2
i j

for 1 � p � NK and

1 � q � NK∑
i j

R(i+l ′)( j+m′)

σ 2
i j

for p = NK + 1 and

1 � q � NK∑
i j

R(i+l)( j+m)

σ 2
i j

for 1 � p � NK and

q = NK + 1∑
i j

1

σ 2
i j

for p = q = NK + 1,

ap =
{

Klm for 1 � p � NK

B0 for p = NK + 1,

bp =

⎧⎪⎨
⎪⎩

∑
i j

Ii j R(i+l)( j+m)

σ 2
i j

for 1 � p � NK∑
i j

Ii j

σ 2
i j

for p = NK + 1,

(4)

where p and q are generalized indices for the vector of unknown

quantities a, with associated kernel indices (l, m) and (l′, m′), re-

spectively. Finding the solutions2 for Klm and B0 requires the con-

struction of the matrix U and vector b, inverting U and calculating

a = U−1b.

Every pixel on both the reference image and current image has

the potential to be included in the calculation of U and b. However,

we ignore bad/saturated pixels on both images, and also any pixels

on the current image for which the calculation of the corresponding

model pixel value includes a bad/saturated pixel on the reference

image. This implies that a single bad/saturated pixel on the refer-

ence image can discount a set of pixels equal to the kernel area on the

current image. Hence, bad/saturated pixels on the reference

image should be kept to a minimum, and excessively large kernels

should be avoided.

The kernel sum P = ∑
lm Klm is a measure of the mean scale

factor between the reference image and the current image, and con-

sequently it includes the effects of relative exposure time and at-

mospheric extinction. We refer to P as the photometric scalefactor.

Although it is not essential, we suggest that a constant background

estimate is subtracted from the reference image before solving for

the kernel and differential background since this will minimize any

correlation between P and B0.

Finally, we mention that a difference image Di j is defined as

Di j = Ii j − Mi j . Assuming that most objects in the reference image

are constant sources, then a difference image will consist of random

noise (mainly Poisson noise from photon counting) except where a

source has varied in brightness or the background pattern has varied.

Sources that are brighter or dimmer at the epoch of the current image

relative to the epoch of the reference image will show up as positive

or negative flux residuals, respectively, on the difference image.

These areas may be measured to yield a difference flux for each

object of interest.

2 Iteration is required for a self-consistent solution for Klm and B0 since the

solution depends on the pixel variances σ 2
i j which, in turn, depend on the

image model values Mi j . See Section 2.3.
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2.3 Uncertainties arise from the model, not the data

We take the following standard CCD noise model for the pixel vari-

ances:

σ 2
i j = σ 2

0

F2
i j

+ Mi j

G Fi j
, (5)

where σ 2
0 is the CCD readout noise (ADU), G is the CCD gain

(e−/ADU) and Fi j is the master flat-field image. Note that the σ i j

depends on the image model Mi j and consequently, fitting Mi j be-

comes an iterative process. Note also that we assume that the ref-

erence image Ri j and master flat-field image Fi j are noiseless since

these are high S/N images. Finally, if the current image was reg-

istered with the reference image via a geometric transformation,

then the flat-field Fi j that is actually used in the noise model must

be the result of the same transformation applied to the original mas-

ter flat-field.

In order to calculate an initial kernel and differential background

solution, we set the Mi j to the image values Ii j . In subsequent iter-

ations, we use the current image model to set the σ i j as per equa-

tion (5). We also employ a 3σ clip algorithm during the iterative

model-fitting process in order to prevent outlier image pixel values

from entering the solution. After each iteration, we calculate the ab-

solute normalized residuals ri j = |Di j/σ i j | for all pixels. Any pixels

with ri j � 3 are ignored in subsequent iterations. The iterations are

stopped when no more image pixels are rejected and at least two

iterations have been performed.

2.4 Solving for a spatially variant kernel solution

In extending our new method to solving for a spatially variant kernel

solution, we preserve flexibility by splitting the image area into an

Nx � 1 by Ny � 1 grid of subregions, and solving for the kernel

and differential background in each subregion. The coarse grid of

kernel and differential background solutions may be interpolated to

yield the solution corresponding to any given image pixel. In this

way, we make no assumptions about how the kernel and differential

background vary across the image area. This is in contrast to AL00,

whose method employs an extension of the kernel basis functions by

further multiplication by polynomials in x and y, and therefore re-

quires two more input parameters from the user, namely the degrees

of the polynomials describing the spatial variation of the kernel and

the differential background.

3 C O M PA R I S O N S W I T H T H E A L A R D

A L G O R I T H M

3.1 Initial tests

To illustrate the potential advantages of our new kernel solution

method over that of AL98, we carry out a set of simple tests on a

1024 × 1024 pixels CCD image of the globular cluster NGC1904.

In each test, we use the original image as the reference image Ri j and

a transformed version of the original image as the current image Ii j ,

where the transformations employed are simple, spatially invariant

and typical of astronomical imaging. We attempt to solve for the

kernel using our new method, which is implemented in a software

package called DANDIA (Bramich, in preparation), and we compare

the solution to that obtained using the ISIS2.2 software from AL00.

We use the ISIS2.2 default parameters specifying three Gaussian ba-

sis functions of σ = 0.7, 2.0, 4.0 pixels with modifying polynomials

of degree 6, 4 and 3, respectively. For both software packages, we

choose to solve for a spatially invariant kernel of size 27 × 27 pixels,

and a constant differential background.

The better the match between the convolved reference im-

age and the current image, the smaller the value of the quantity

S2 = ∑
i, j D2

i j . We gauge the relative quality of the kernel solu-

tions by calculating the noise ratio SISIS/SDANDIA, where SISIS and

SDANDIA are values of S calculated for a small 80 × 80 pixels subre-

gion using ISIS2.2 and DANDIA, respectively.

The results of the tests described below are shown in Fig. 1.

(i) In test A, the current image has been created by shifting the

reference image by one pixel in each of the positive x and y spatial

directions, without resampling. The corresponding kernel should be

the identity kernel (central pixel value of 1 and 0 elsewhere) shifted

by one pixel in each of the negative u and v kernel coordinates.

DANDIA recovers this kernel to within numerical rounding errors

whereas ISIS2.2 recovers a peak pixel value of 0.995 with other

absolute pixel values of up to 0.004. Consequently, the residuals in

the ISIS2.2 difference image are considerably worse than those for

DANDIA, and the noise ratio is SISIS/SDANDIA ≈ 26190.

(ii) In test B, the current image has been created by convolving

the reference image with a Gaussian of full width at half-maximum

(FWHM) 4.0 pixels. Both DANDIA and ISIS2.2 recover the kernel

successfully, but DANDIA outperforms ISIS2.2 with SISIS/SDANDIA ≈
1510.

(iii) In test C, we shifted the reference image by half a pixel in

each of the positive x and y spatial directions to create the cur-

rent image, an operation that required the resampling of the refer-

ence image. We used the cubic O-MOMS (Optimal Maximal-Order-

Minimal-Support) resampling method (see Section 3.2). ISIS2.2 fails

to reproduce the highly complicated kernel matching the two im-

ages, whereas DANDIA does a nearly perfect job. The noise ratio is

SISIS/SDANDIA ≈ 18450.

(iv) In test D, we simulate a telescope jump by setting Ii j =
(0.6 × Ri j ) + (0.4 × R′

i j ), where R′
i j is a resampled version of the

reference image shifted by 3.5 pixels in each of the positive x and

y spatial directions. The corresponding kernel is a combination of

the identity kernel and a shifted version of the kernel from test

C. DANDIA accurately reproduces this kernel with a central pixel

value of 0.600 15 whereas ISIS2.2 produces a poor approximation

of the kernel with a central pixel value of 0.631. The noise ratio is

SISIS/SDANDIA ≈ 31000.

It is evident that the Gaussian basis functions used in ISIS2.2 limit

the flexibility of the kernel solution to modelling kernels that are

centred near the kernel centre and that have scale sizes similar to

the sigmas of the Gaussians employed. It is only in test B that ISIS2.2

can closely model the kernel, simply because the kernel itself is a

Gaussian. Tests A, C and D show how ISIS2.2 is unable to model

sharp, complicated and off-centred kernels. DANDIA does not suffer

from any of these limitations since it makes no assumption about

the kernel shape, and hence it performs superbly in all of the above

tests.

3.2 Image resampling

In Section 2, we make the assumption that the reference image and

current image are registered, which implies that one of the images

has been transformed to the pixel coordinate system of the other

image, usually via image resampling. Ideally, one should transform

the reference image to the current image since the reference image

forms part of the model. In this way, the pixel variances in the

current image are left uncorrelated from pixel to pixel. However,

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 386, L77–L81
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Figure 1. The shown are four difference imaging tests A − D. In each panel corresponding to a test, there are three pairs of images, where each pair is shown

using the same intensity scale indicated by the graduated colour bar. In the left-hand side most pair, the reference image and current image subregions are shown

in the left- and right-hand panel, respectively. In the middle pair, the DANDIA and ISIS2.2 difference images are shown in the top and bottom panel, respectively.

In the right-hand side most pair, the corresponding DANDIA and ISIS2.2 kernel solutions are shown in the top and bottom panel, respectively.

most implementations of DIA transform the current image to the

coordinate system of the reference image using image resampling.

We suggest two improvements to this methodology. First, if re-

sampling is to be employed, one should use an optimal resampling

method. We employ the cubic O-MOMS basis function for resam-

pling, which is constructed from a linear combination of the cubic

B-spline function and its derivatives. The O-MOMS class of

functions have the highest approximation order and smallest ap-

proximation error constant for a given support (Blu et al. 2001).

Secondly, our kernel model does not use basis functions that are

functions of the kernel pixel coordinates. Consequently, for two im-

ages that require only a translation to be registered, the image resam-

Figure 2. The shown are four more difference imaging tests E − F. In the left-hand panel, we show 100 × 100 pixel cut-outs from the reference image and

current image. The remaining panels show corresponding difference images normalized by the pixel noise model (equation 6) with a linear scale from −2 to

2, and histograms of the normalized pixel values overlaid with a Gaussian fit.

pling is incorporated in the kernel solution, avoiding the problem of

correlated pixel noise. DIA is used extensively for extracting light

curves of objects in time-series images, which usually only have a

small pixel shift between images. By translating the current image

to the reference image by an integer pixel shift, avoiding image re-

sampling, the kernel solution process can do the rest of the job of

matching the reference image to the current image.

3.3 Final tests

We now test our new algorithm on a pair of 1024 × 1024 pixels

images of NGC1904 from the same camera with FWHMs of ∼3.2

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 386, L77–L81
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and ∼4.9 pixels. Using matching star pairs, we derive a linear trans-

formation between the images that consists of a translation with

negligible rotation, shear and scaling. From the calibration images,

we measure a gain of 1.48 e−/ADU and a readout noise of 4.64 ADU,

and we construct a master flat-field for use in the noise model. In the

left-hand panel of Fig. 2, we present 100 × 100 pixel cut-outs of the

reference image (the better seeing image) and the current image.

When calculating the χ2 of the difference images, we use a mod-

ified version of equation (5) to account for the noise contribution

from the single-exposure reference image:

σ 2
i j = σ 2

0

F2
i j

+ Mi j

G Fi j
+ f 2

[∑
lm

K 2
lmi j

(
σ 2

0

F2
i j

+ Ri j

G Fi j

)]
, (6)

where Klmi j is the space variant kernel and f is a factor correcting

for the noise distortion from resampling the reference image. The

value of f depends on the resampling method used and the coordi-

nate transformation applied. We calculate f by generating a 1024 ×
1024 pixels image of values drawn from a normal distribution with

zero mean and unit σ , resampling the image using the same method

and transformation as that applied to the reference image, and then

fitting a Gaussian to the histogram of transformed pixel values, the

σ of which indicates the value of f. For cubic O-MOMS resampling

and the transformation between our two test images, we obtain f =
0.884.

Our first pair of tests involves registering the images by re-

sampling the reference image via cubic O-MOMS and then using

DANDIA (test E) and ISIS2.2 (test F) to generate difference images.

For DANDIA, we solve for an array of circular kernels corresponding

to a 10 × 10 grid of image subregions, where each kernel contains

317 pixels. The kernel used to convolve each pixel on the reference

image is calculated via bilinear interpolation of the array of ker-

nels. The results of test E are displayed in the upper middle panel

of Fig. 2 where we show the difference image normalized by the

pixel noise from equation (6) with a linear scale from −2 to 2. Two

variable stars are visible (RR Lyraes) and the cosmic ray from the

reference image has created a negative flux on the difference image.

In the same panel, we plot the histogram of normalized pixel values

overlaid with a Gaussian fit, and calculate a χ2 ≈ 9439, ignoring

the small pixel areas including the variable stars and the cosmic ray

(250 pixels). The 100 × 100 pixels cut-out corresponds to one image

subregion used to determine a kernel solution and hence we may

calculate a reduced χ 2 of χ2/Nd.o.f. = 1.00 by assuming Nd.o.f. =
9750−318.

For ISIS2.2, we solve for a spatially variant kernel of degree 2 with

a spatially variant differential background of degree 3 in addition

to the other default kernel basis functions (see Section 3.1; 328 free

parameters). The results of test F are shown in the upper right-hand

panel of Fig. 2. We obtain χ2 ≈ 9838, and assuming approximately

three free parameters per image subregion, we obtain χ 2/Nd.o.f. =
1.01.

Tests G and H involve registering the images to within one pixel

by translating the reference image via an integer pixel shift. Then, we

apply DANDIA (test G) and ISIS2.2 (test H) to obtain kernel solutions,

avoiding the use of resampling. For DANDIA, we obtain χ 2 ≈ 9373,

and for ISIS2.2 we obtain χ2 ≈ 9739, with corresponding χ2/Nd.o.f.

of 0.99 and 1.00, respectively (see Fig. 2).

Visually, the normalized difference image cut-outs in Fig. 2 are

very similar, and differences are only notable after detailed scrutiny.

However, the χ2 analysis reveals that our algorithm performs con-

siderably better than the Alard algorithm (test E performs 0.60σ

better than test F, and test G performs 0.38σ better than test H),

and that image resampling degrades the difference images (test

G performs 0.48σ better than test E, and test H performs 0.70σ

better than test F). The highest quality difference image was pro-

duced by using DANDIA on the two images aligned to within one

pixel but without resampling (test G, which performs 1.08σ better

than test F).

4 C O N C L U S I O N S

We have presented a new method for determining the convolution

kernel matching a best-seeing reference image to another image

of the same field. The method involves modelling the kernel as a

pixel array, avoiding the use of possibly inappropriate basis func-

tions, and eliminating the need for the user to specify which basis

functions to use via numerous parameters. For images that require

a translation to be registered, the kernel pixel array incorporates the

resampling process in the kernel solution, avoiding the need to re-

sample images, which degrades their quality and creates correlated

pixel noise. Kernels modelled by basis functions may only partly

compensate for subpixel translations since the basis functions are

centred at the origin of the kernel coordinates.

We have shown that our new method can produce higher quality

difference images than ISIS2.2. Ideally, the reference image should

be aligned with the current image, preferably without resampling,

but using O-MOMS resampling when necessary. The flexibility of

our kernel model allows the construction of difference images for

telescope jumps, or trailed images, which is where ISIS2.2 fails.

These improvements have important implications for time-series

photometric surveys. Better quality difference images implies more

accurate light curves, and the increased kernel flexibility will lead

to less data loss due to telescope tracking and/or focus errors.
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R E F E R E N C E S

Alard C., 2000, A&AS, 144, 363

Alard C., Lupton R. H., 1998, AJ, 503, 325
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